Rado's theorem

Rado's theorem

: "See also Rado's theorem (Ramsey theory)"

In mathematics, Rado's theorem is a result about harmonic functions. Informally, it says that any "nice looking" shape without holes can be smoothly deformed into a disk.

Suppose Ω is an open, connected and convex subset of the Euclidean space R2 with smooth boundary ∂Ω and suppose that D is the unit disk. Then, given any homeomorphism μ : ∂ D → ∂ Ω, there exists a unique harmonic function "u" : D → Ω such that "u" = μ on ∂D and "u" is a diffeomorphism.

References

* R. Schoen, S. T. Yau. (1997) Lectures on Harmonic Maps. International Press, Inc., Boston, Massachusetts. ISBN 1-57146-002-0.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Rado's theorem (Ramsey theory) — There is also a Rado s theorem about harmonic functions. Rado s theorem is a theorem from the branch of mathematics known as Ramsey theory. It is named for the English mathematician Richard Rado.Let Ax=0 be a system of linear equations, where A… …   Wikipedia

  • Rado graph — The Rado graph, as numbered by Rado (1964). In the mathematical field of graph theory, the Rado graph, also known as the random graph or the Erdős–Renyi graph, is the unique (up to isomorphism) countable graph R such that for any finite graph G… …   Wikipedia

  • Théorème de Rado —  Ne doit pas être confondu avec Rado. Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. En mathématiques, il y a plusieurs théorèmes de Richard Rado  …   Wikipédia en Français

  • Théorème de Radó (fonctions harmoniques) — Pour les articles homonymes, voir Théorème de Rado. En mathématiques, le théorème de Radó sur les fonctions harmoniques, nommé d après Tibor Radó, exprime qu une « bonne » forme « sans trous » peut être déformée de façon lisse …   Wikipédia en Français

  • Théorème de Radó (surfaces de Riemann) — Pour les articles homonymes, voir Théorème de Rado. En géométrie complexe, le théorème de Radó, démontré par Tibor Radó en 1925, stipule que toute surface de Riemann connexe est à base dénombrable d ouverts. La surface de Prüfer (en) …   Wikipédia en Français

  • De Bruijn–Erdős theorem (graph theory) — This article is about coloring infinite graphs. For the number of lines determined by a finite set of points, see De Bruijn–Erdős theorem (incidence geometry). In graph theory, the De Bruijn–Erdős theorem, proved by Nicolaas Govert de Bruijn and… …   Wikipedia

  • Erdős–Ko–Rado theorem — In combinatorics, the Erdős–Ko–Rado theorem of Paul Erdős, Chao Ko, and Richard Rado is a theorem on hypergraphs, specifically, on uniform hypergraphs of rank r .The theorem is as follows. If ngeq2r, and A is a family of distinct subsets of {1,2 …   Wikipedia

  • Richard Rado — (April 28 1906 ndash; December 23 1989) was a Jewish, German mathematician. He earned 2 Ph.D.s: in 1933 from the University of Berlin, and in 1935 from the University of Cambridge. [MathGenealogy|id=17975] He was interviewed in Berlin by Lord… …   Wikipedia

  • Von Staudt–Clausen theorem — In number theory, the von Staudt–Clausen theorem is a result determining the fractional part of Bernoulli numbers, found independently by Karl von Staudt (1840) and Thomas Clausen (1840). Specifically, if we add 1/p to Bn for every… …   Wikipedia

  • Kuratowski's free set theorem — Kuratowski s free set theorem, named after Kazimierz Kuratowski, is a result of set theory, an area of mathematics. It is a result which has been largely forgotten for almost 50 years, but has been applied recently in solving several lattice… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”