Rado's theorem (Ramsey theory) — There is also a Rado s theorem about harmonic functions. Rado s theorem is a theorem from the branch of mathematics known as Ramsey theory. It is named for the English mathematician Richard Rado.Let Ax=0 be a system of linear equations, where A… … Wikipedia
Rado graph — The Rado graph, as numbered by Rado (1964). In the mathematical field of graph theory, the Rado graph, also known as the random graph or the Erdős–Renyi graph, is the unique (up to isomorphism) countable graph R such that for any finite graph G… … Wikipedia
Théorème de Rado — Ne doit pas être confondu avec Rado. Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. En mathématiques, il y a plusieurs théorèmes de Richard Rado … Wikipédia en Français
Théorème de Radó (fonctions harmoniques) — Pour les articles homonymes, voir Théorème de Rado. En mathématiques, le théorème de Radó sur les fonctions harmoniques, nommé d après Tibor Radó, exprime qu une « bonne » forme « sans trous » peut être déformée de façon lisse … Wikipédia en Français
Théorème de Radó (surfaces de Riemann) — Pour les articles homonymes, voir Théorème de Rado. En géométrie complexe, le théorème de Radó, démontré par Tibor Radó en 1925, stipule que toute surface de Riemann connexe est à base dénombrable d ouverts. La surface de Prüfer (en) … Wikipédia en Français
De Bruijn–Erdős theorem (graph theory) — This article is about coloring infinite graphs. For the number of lines determined by a finite set of points, see De Bruijn–Erdős theorem (incidence geometry). In graph theory, the De Bruijn–Erdős theorem, proved by Nicolaas Govert de Bruijn and… … Wikipedia
Erdős–Ko–Rado theorem — In combinatorics, the Erdős–Ko–Rado theorem of Paul Erdős, Chao Ko, and Richard Rado is a theorem on hypergraphs, specifically, on uniform hypergraphs of rank r .The theorem is as follows. If ngeq2r, and A is a family of distinct subsets of {1,2 … Wikipedia
Richard Rado — (April 28 1906 ndash; December 23 1989) was a Jewish, German mathematician. He earned 2 Ph.D.s: in 1933 from the University of Berlin, and in 1935 from the University of Cambridge. [MathGenealogy|id=17975] He was interviewed in Berlin by Lord… … Wikipedia
Von Staudt–Clausen theorem — In number theory, the von Staudt–Clausen theorem is a result determining the fractional part of Bernoulli numbers, found independently by Karl von Staudt (1840) and Thomas Clausen (1840). Specifically, if we add 1/p to Bn for every… … Wikipedia
Kuratowski's free set theorem — Kuratowski s free set theorem, named after Kazimierz Kuratowski, is a result of set theory, an area of mathematics. It is a result which has been largely forgotten for almost 50 years, but has been applied recently in solving several lattice… … Wikipedia