Modulus and characteristic of convexity

Modulus and characteristic of convexity

In mathematics, the modulus and characteristic of convexity are measures of "how convex" the unit ball in a Banach space is. In some sense, the modulus of convexity has the same relationship to the ε-δ definition of uniform convexity as the modulus of continuity does to the ε-δ definition of continuity.

Definitions

The modulus of convexity of a Banach space (X, || ||) is the function δ : [0, 2] → [0, 1] defined by

\delta (\varepsilon) = \inf \left\{ \left. 1 - \left\| \frac{x + y}{2} \right\| \, \right| x, y \in S, \| x - y \| \geq \varepsilon \right\},

where S denotes the unit sphere of (X, || ||). The characteristic of convexity of the space (X, || ||) is the number ε0 defined by

ε0 = sup{ε | δ(ε) = 0}.

These notions are implicit in the general study of uniform convexity by J. A. Clarkson (see below; this is the same paper containing the statements of Clarkson's inequalities). The term "modulus of convexity" appears to be due to M. M. Day (see reference below).

Properties

References

  1. ^ p. 67 in Lindenstrauss, Joram; Tzafriri, Lior, "Classical Banach spaces. II. Function spaces". Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], 97. Springer-Verlag, Berlin-New York, 1979. x+243 pp.
  • Beauzamy, Bernard (1985 [1982]). Introduction to Banach Spaces and their Geometry (Second revised ed.). North-Holland. ISBN 0444864164. MR889253. 
  • Clarkson, James (1936). "Uniformly convex spaces". Trans. Amer. Math. Soc. (American Mathematical Society) 40 (3): 396–414. doi:10.2307/1989630. JSTOR 1989630. 
  • Day, Mahlon (1944). "Uniform convexity in factor and conjugate spaces". Ann. Of Math. (2) (Annals of Mathematics) 45 (2): 375–385. doi:10.2307/1969275. JSTOR 1969275. 
  • Fuster, Enrique Llorens. Some moduli and constants related to metric fixed point theory. Handbook of metric fixed point theory, 133-175, Kluwer Acad. Publ., Dordrecht, 2001. MR1904276
  • Lindenstrauss, Joram and Benyamini, Yoav. Geometric nonlinear functional analysis Colloquium publications, 48. American Mathematical Society.
  • Vitali D. Milman. Geometric theory of Banach spaces II. Geometry of the unit sphere. Uspechi Mat. Nauk, vol. 26, no. 6, 73-149, 1971; Russian Math. Surveys, v. 26 6, 80-159.

Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • List of mathematics articles (M) — NOTOC M M estimator M group M matrix M separation M set M. C. Escher s legacy M. Riesz extension theorem M/M/1 model Maass wave form Mac Lane s planarity criterion Macaulay brackets Macbeath surface MacCormack method Macdonald polynomial Machin… …   Wikipedia

  • Uniformly convex space — In mathematics, uniformly convex spaces are common examples of reflexive Banach spaces. These include all Hilbert spaces and the L p spaces for 10 so that for any two vectors with |x|le1 and |y|le 1, :|x+y|>2 delta implies :|x y| …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”