- Orthant
-
In geometry, an orthant[1] or hyperoctant[2] is the analogue in n-dimensional Euclidean space of a quadrant in the plane or an octant in three dimensions.
In general an orthant in n-dimensions can be considered the intersection of n mutually orthogonal half-spaces. By permutations of half-space signs, there are 2n orthants in n-dimensional space.
More specifically, a closed orthant in Rn is a subset defined by constraining each Cartesian coordinate to be nonnegative or nonpositive. Such a subset is defined by a system of inequalities:
- ε1x1 ≥ 0 ε2x2 ≥ 0 · · · εnxn ≥ 0,
where each εi is +1 or −1.
Similarly, an open orthant in Rn is a subset defined by a system of strict inequalities
- ε1x1 > 0 ε2x2 > 0 · · · εnxn > 0,
where each εi is +1 or −1.
By dimension:
- In one dimension, an orthant is a ray.
- In two dimensions, an orthant is a quadrant.
- In three dimensions, an orthant is an octant.
Standard space
The n-orthant is a standard space in two ways: every polytope with n faces maps into the n-orthant via slack variables, and conversely every polygonal cone on n vertices is the image of (maps from) the n-orthant. Compare the n-simplex, which maps to every polytope with n-vertices.
See also
- Cross polytope (or orthoplex) - a family of regular polytopes in n-dimensions which can be constructed with one simplex facets in each orthant space.
- Measure polytope (or hypercube) - a family of regular polytopes in n-dimensions which can be constructed with one vertex in each orthant space.
- Orthotope - Generalization of a rectangle in n-dimensions, with one vertex in each orthant.
Notes
Categories:
Wikimedia Foundation. 2010.