Computational topology

Computational topology

Algorithmic topology, or computational topology, is a subfield of topology with an overlap with areas of computer science, in particular computational geometry and computational complexity theory.

A primary concern of algorithmic topology, as its name suggests, is to develop efficient algorithms for solving topological problems, or using topological methods to solve algorithmic problems from other fields.

Contents

Major algorithms by subject area

Algorithmic 3-manifold theory

A large family of algorithms concerning 3-manifolds revolve around normal surface theory, which is a phrase that encompasses several techniques to turn problems in 3-manifold theory into integer linear programming problems.

  • Rubinstein and Thompson's 3-sphere recognition algorithm. This is an algorithm that takes as input a triangulated 3-manifold and determines whether or not the manifold is homeomorphic to the 3-sphere. It has exponential run-time in the number of tetrahedra in the initial 3-manifold, and also an exponential memory profile, moreover, it is implemented in the software package Regina.[1] Saul Schleimer went on to show the problem lies in the complexity class NP.[2]
  • The connect-sum decomposition of 3-manifolds is also implemented in Regina, has exponential run-time and is based on a similar algorithm to the 3-sphere recognition algorithm.
  • Determining that the Seifert-Weber 3-manifold contains no incompressible surface has been algorithmically implemented by Rubinstein, Tillmann and Burton [3] and based on normal surface theory.

At present the JSJ decomposition has not been implemented algorithmically in computer software. Neither has the compression-body decomposition. There are some very popular and successful heuristics, such as SnapPea which has much success computing approximate hyperbolic structures on triangulated 3-manifolds. It is known that the full classification of 3-manifolds can be done algorithmically.[5]

Conversion Algorithms

  • SnapPea implements an algorithm to convert a planar knot or link diagram into a cusped triangulation. This algorithm has a roughly linear run-time in the number of crossings in the diagram, and low memory profile. The algorithm is similar to the Wirthinger algorithm for constructing presentations of the fundamental group of link complements given by planar diagrams. Similarly, SnapPea can convert surgery presentations of 3-manifolds into triangulations of the presented 3-manifold.
  • D.Thurston and F.Costantino have a procedure to construct a triangulated 4-manifold from a triangulated 3-manifold. Similarly, it can be used to construct surgery presentations of triangulated 3-manifolds, although the procedure is not explicitly written as an algorithm in principle it should have polynomial run-time in the number of tetrahedra of the given 3-manifold triangulation.[6]
  • S. Schleimer has an algorithm which produces a triangulated 3-manifold, given input a word (in Dehn twist generators) for the mapping class group of a surface. The 3-manifold is the one that uses the word as the attaching map for a Heegaard splitting of the 3-manifold. The algorithm is based on the concept of a layered triangulation.

Algorithmic knot theory

  • Determining whether or not a knot is trivial is known to be in the complexity class NP [7]
  • The problem of determining the genus of a knot is known to have complexity class PSPACE.

Computational homotopy

  • Computational methods for homotopy groups of spheres.
  • Computational methods for solving systems of polynomial equations.
  • Brown has an algorithm to compute the homotopy groups of spaces that are finite Postnikov complexes,[9] although it is not widely considered implementable.

See also

References

  1. ^ B.~Burton. Introducing Regina, the 3-manifold topology software, Experimental Mathematics 13 (2004), 267–272.
  2. ^ http://www.warwick.ac.uk/~masgar/Maths/np.pdf
  3. ^ J. Hyam Rubinstein, Stephan Tillmann, Ben Burton. No other proof exists. To appear in Transactions of the American Mathematical Society, arXiv:0909.4625, September 2009.
  4. ^ J.Manning, Algorithmic detection and description of hyperbolic structures on 3-manifolds with solvable word problem, Geometry and Topology 6 (2002) 1--26
  5. ^ S.Matveev, Algorithmic topology and the classification of 3-manifolds, Springer-Verlag 2003
  6. ^ F. Costantino, D.Thurston. 3-manifolds efficiently bound 4-manifolds. Journal of Topology 2008 1(3):703-745
  7. ^ "The computational complexity of knot and link problems" by Joel Hass, Jeffrey Lagarias, and Nicholas Pippenger [Journal of the ACM 46(2) 185-211 (1999)]
  8. ^ http://katlas.math.toronto.edu/wiki/Main_Page
  9. ^ E H Brown's "Finite Computability of Postnikov Complexes" annals of Mathematics (2) 65 (1957) pp 1-20

External links

Books


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Computational mathematics — involves mathematical research in areas of science where computing plays a central and essential role, emphasizing algorithms, numerical methods, and symbolic methods. Computation in the research is prominent.[1] Computational mathematics emerged …   Wikipedia

  • Computational — may refer to: Computer Computational algebra Computational Aeroacoustics Computational and Information Systems Laboratory Computational and Systems Neuroscience Computational archaeology Computational auditory scene analysis Computational biology …   Wikipedia

  • Computational geometry — is a branch of computer science devoted to the study of algorithms which can be stated in terms of geometry. Some purely geometrical problems arise out of the study of computational geometric algorithms, and such problems are also considered to… …   Wikipedia

  • Computational phylogenetics — is the application of computational algorithms, methods and programs to phylogenetic analyses. The goal is to assemble a phylogenetic tree representing a hypothesis about the evolutionary ancestry of a set of genes, species, or other taxa. For… …   Wikipedia

  • Computational chemistry — is a branch of chemistry that uses principles of computer science to assist in solving chemical problems. It uses the results of theoretical chemistry, incorporated into efficient computer programs, to calculate the structures and properties of… …   Wikipedia

  • Computational epistemology — is a subdiscipline of formal epistemology that studies the intrinsic complexity of inductive problems for ideal and computationally bounded agents. In short, computational epistemology is to induction what recursion theory is to deduction.… …   Wikipedia

  • Computational number theory — In mathematics, computational number theory, also known as algorithmic number theory, is the study of algorithms for performing number theoretic computations. The best known problem in the field is integer factorization. See also Computational… …   Wikipedia

  • Digital topology — deals with properties and features of two dimensional (2D) or three dimensional (3D) digital images that correspond to topological properties (e.g., connectedness) or topological features (e.g., boundaries) of objects. Concepts and results of… …   Wikipedia

  • List of topology topics — This is a list of topology topics, by Wikipedia page. See also: topology glossary List of general topology topics List of geometric topology topics List of algebraic topology topics List of topological invariants (topological properties)… …   Wikipedia

  • List of books in computational geometry — This is a list of books in computational geometry. There are two major, largely nonoverlapping categories: *Combinatorial computational geometry, which deals with collections of discrete objects or defined in discrete terms: points, lines,… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”