Discrete exterior calculus

Discrete exterior calculus

In mathematics, the discrete exterior calculus (DEC) is the extension of the exterior calculus to discrete spaces including graphs and finite element meshes. DEC methods have proved to be very powerful in improving and analyzing finite element methods: for instance, DEC-based methods allow the use of highly non-uniform meshes to obtain accurate results. Non-uniform meshes are advantageous because they allow the use of large elements where the process to be simulated is relatively simple, as opposed to a fine resolution where the process may be complicated (e.g., near an obstruction to a fluid flow), while using less computational power than if a uniformly fine mesh were used.

The discrete exterior derivative

Stokes' theorem relates the integral of a differential (n − 1)-form ω over the boundaryM of an n-dimensional manifold M to the integral of dω (the exterior derivative of ω, and a differential n-form on M) over M itself:

\int_{M} \mathrm{d} \omega = \int_{\partial M} \omega.

One could think of differential k-forms as linear operators that act on k-dimensional "bits" of space, in which case one might prefer to use the bra-ket notation for a dual pairing. In this notation, Stokes' theorem reads as

\langle \mathrm{d} \omega | M \rangle = \langle \omega | \partial M \rangle.

In finite element analysis, the first stage is often the approximation of the domain of interest by a triangulation, T. For example, a curve would be approximated as a union of straight line segments; a surface would be approximated by a union of triangles, whose edges are straight line segments, which themselves terminate in points. Topologists would refer to such a construction as a simplicial complex. The boundary operator on this triangulation/simplicial complex T is defined in the usual way: for example, if L is a directed line segment from one point, a, to another, b, then the boundary ∂L of L is the formal difference b − a.

A k-form on T is a linear operator acting on k-dimensional subcomplexes of T; e.g., a 0-form assigns values to points, and extends linearly to linear combinations of points; a 1-form assigns values to line segments in a similarly linear way. If S is a (k + 1)-dimensional subcomplex of T and ω is a k-form on T, then the discrete exterior derivative dω of ω is the unique (k + 1)-form defined so that Stokes' theorem holds:

\langle \mathrm{d} \omega | S \rangle = \langle \omega | \partial S \rangle.

Other concepts such as the discrete wedge product and the discrete Hodge star can also be defined.

See also

References


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Discrete differential geometry — is the study of discrete counterparts of notions in differential geometry. Instead of smooth curves and surfaces, there are polygons, meshes, and simplicial complexes. It is used in the study of computer graphics and topological combinatorics.… …   Wikipedia

  • Discrete mathematics — For the mathematics journal, see Discrete Mathematics (journal). Graphs like this are among the objects studied by discrete mathematics, for their interesting mathematical properties, their usefulness as models of real world problems, and their… …   Wikipedia

  • Exterior derivative — In differential geometry, the exterior derivative extends the concept of the differential of a function, which is a form of degree zero, to differential forms of higher degree. Its current form was invented by Élie Cartan.The exterior derivative… …   Wikipedia

  • List of mathematics articles (D) — NOTOC D D distribution D module D D Agostino s K squared test D Alembert Euler condition D Alembert operator D Alembert s formula D Alembert s paradox D Alembert s principle Dagger category Dagger compact category Dagger symmetric monoidal… …   Wikipedia

  • Laplace operator — This article is about the mathematical operator. For the Laplace probability distribution, see Laplace distribution. For graph theoretical notion, see Laplacian matrix. Del Squared redirects here. For other uses, see Del Squared (disambiguation) …   Wikipedia

  • List of numerical analysis topics — This is a list of numerical analysis topics, by Wikipedia page. Contents 1 General 2 Error 3 Elementary and special functions 4 Numerical linear algebra …   Wikipedia

  • DEC — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom.   Sigles d’une seule lettre   Sigles de deux lettres > Sigles de trois lettres   Sigles de quatre lettres …   Wikipédia en Français

  • Topological combinatorics — The discipline of combinatorial topology used combinatorial concepts in topology and in the early 20th century this gradually turned into the field of algebraic topology. In 1978 the situation was reversed when methods from algebraic topology… …   Wikipedia

  • Douglas N. Arnold — Douglas Norman Arnold is a mathematician whose research focuses on the numerical analysis of partial differential equations with applications in mechanics and other fields in physics. As of 2008[update], he is McKnight Presidential Professor of… …   Wikipedia

  • Outline of algebraic structures — In universal algebra, a branch of pure mathematics, an algebraic structure is a variety or quasivariety. Abstract algebra is primarily the study of algebraic structures and their properties. Some axiomatic formal systems that are neither… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”