- Glandulocaudinae
Taxobox
name = Glandulocaudinae
regnum =Animal ia
phylum =Chordata
classis =Actinopterygii
ordo =Characiformes
familia =Characidae
subfamilia = Glandulocaudinae
subdivision_ranks = Genera
subdivision = "Acrobrycon "
"Argopleura "
"Chrysobrycon "
"Corynopoma "
"Diapoma "
"Gephyrocharax "
"Glandulocauda "
"Hysteronotus "
"Iotabrycon "
"Landonia "
"Lophiobrycon "
"Mimagoniates "
"Phenacobrycon "
"Planaltina"
"Pseudocorynopoma "
"Pterobrycon "
"Ptychocharax "
"Scopaeocharax "
"Tyttocharax "
"Xenurobrycon "Glandulocaudinae is a subfamily of tropical characin
fish from Central andSouth America . In all species of this subfamily, a gland on their caudal fin is found almost exclusively in the males, which allows the release and pumping ofpheromone s; also, members of this subfamily have complexcourtship behaviors that leads toinsemination . The ecology and life history of these fish is complex yet little studied.FishBase family|family=Characidae|year=2007|month=Apr] Glandulocaudines are important as food fish for larger fish important for commercial and subsistence reasons.Taxonomy
Glandulocaudinae consists of twenty genera divided among seven monophyletic, morphologically differing tribes. The monophyly of the subfamily itself needs much further investigation. There are about 60
species . However, there remain many undescribed species.cite book | title = Fishes of the World | last = Nelson | first = Joseph, S. | publisher = John Wiley & Sons, Inc. | year = 2006 | ISBN = 0471250317]Distribution and habitat
Glandulocaudines occur in practically all major
South America ndrainage s.cite journal|url=http://www.ufrgs.br/ni/vol1num1%5Cartigo02.pdf|title="Lophiobrycon weitzmani", a new genus and species of glandulocaudine fish (Characiformes: Characidae) from the rio Grande drainage, upper rio Paraná system, southeastern Brazil|journal=Neotropical Ichthyology|pages=11–19|year=2003|format=PDF |last=Castro|first=Ricardo M.C.|coauthors=Ribeiro, Alexandre C.; Benine, Ricardo C.; Melo, Alex L. A.] Along Pacific drainages, they are distributed fromCosta Rica toEcuador , and along Atlantic drainages, their range extends to northernArgentina . These fishes are found in every South American country, includingTrinidad , exceptChile ; they inhabit streams that are tributaries to larger rivers such as the Amazon, Orinoco, andParaguay River s in tropical species, or coastal streams tributary to the Atlantic and Pacific Oceans and theCaribbean Sea in the few subtropical species.The
habitat s of these fish vary. A few species are known fromelevation s as high as 500-600metre s (1600-2000 ft), and "Lophiobrycon weitzmani" is known as high as 900 m (3000 ft). Some species are confined toacidic black rainforest waters, and others are found in clearer, neutral to somewhatalkaline waters; a few species are even adapted to both kinds of waters. However, there are nobrackish water species.Characteristics
Glandulocaudines are small, less than 13
centimetre s (5 in). Most are between about 5-6 cm SL (about 2 in), but some species can be even smaller, between 11 and 30millimetre s (.4-1 in). The reproductive adaptations of glandulocaudines is what sets this group apart from the other Characins. Males have a caudal organ associated withgland tissues. Synapomorphies of this subfamily includeinsemination , a posteriorsperm storage area in thetestes , and an elongate sperm nucleus.All males have some form of modified caudal gland used to release
pheromone s as part ofcourtship .cite journal|url=http://www3.interscience.wiley.com/cgi-bin/fulltext/93521003/PDFSTART?CRETRY=1&SRETRY=0|title=Gill-Derived Glands in Glandulocaudine Fishes (Teleostei: Characidae: Glandulocaudinae)|journal=Journal of Morphology|pages=187–195|year=2005|format=PDF |last=Bushmann|first=Paul J.|coauthors=Burns, John R.; Weitzman, Stanley J.] The structure of this gland depends on the specific tribe; the organ may consist of modified caudal fin rays; modified caudal fin scales, a derived hypural fan, or modified caudal fin musculature, or combinations of the above. Modified scales may act asbellows in releasing chemicals into the water. A caudal fin ray pheromone pump, unique to tribe Glandulocaudini, consists of glandular tissue associated with modified scales and fin rays. The tribe Diapomini is the only tribe in which the caudal gland is equally developed in both the males and females.Females of all glandulocaudine species are inseminated. The females produce fewer eggs per unit body weight than externally fertilizing species; this is possibly because insemination increases the efficiency of fertilization, so fewer eggs are necessary. This insemination is preceded by
courtship in all species. After insemination, the female may retain the live sperm for many months in her ovaries. This allows the eggs to be laid when environmental conditions are favorable. However, there is no evidence of an intromittent organ, and the exact mechanism of insemination is unknown. Hooks on the anal fin of males may play a role, although these are also found in characins that exhibitexternal fertilization . It was originally believed thatinternal fertilization occurs in glandulocaudines. However, the exact time of fertilization is unknown and no fertilized eggs are found internally; this suggests fertilization occurs when the eggs are being laid or even outside of the body.cite journal|url=http://www.bioone.org/archive/0045-8511/2000/4/pdf/i0045-8511-2000-4-983.pdf|title=Reproductive Biology of the Inseminating Glandulocaudine Diapoma speculiferum Cope (Teleostei: Characidae)|journal=Copeia |year=2000|pages=983–989|last=Azebdo|first=Marco A.|coauthors=Malabarba, Luiz R.; Fialho, Clarice B.|format=PDF ]Due to insemination, the
sperm of glandulocaudines has adapted. In many species, an elongate cytoplasmic collar binds theflagellum to the elongate nucleus at some stage of spermiogenesis. In almost all species, the sperm cell bodies are elongate. In the tribe Diapomini, the genus "Planaltina" expresses only round sperm (like that of externally fertilizing characins) and the genera "Diapoma" and "Acrobrycon" only express slightly elongated sperm; this may indicate a possible plesiomorphy. Some sperm have enlarged regions containingmitochondria , which may help in prolonging the life of the sperm while stored in the ovary. In some genera, sperm clumping and patterns of arrangement are observed in the sperm ducts and storage regions. In the tribes Xenobryconini (in the genera "Tyttocharax", "Scopaeocharax", and "Xenurobrycon") and Glandulocaudini, there is a form of sperm packaging which would allow for a higher sperm density during transfer from the male to the female. These packets are called "spermatozeugmata", and the sperm are packagedparallel to each other; this packaging is further increased by the elongation of the sperm cells. In Xenobryconini, each spermatozeugma is produced and is released fully formed in the spermatocysts, but in Glandulocaudini, the sperm is released from the spermatocysts and packaged elsewhere. The spermatozeugmata are situated in the posterior end of the testes, which serves as a storage area for sperm.cite journal|url=http://www3.interscience.wiley.com/cgi-bin/fulltext/109857190/PDFSTART|title=Sperm and Spermatozeugma Ultrastructure in the Inseminating Species "Tyttocharax cochui", "T. tambopatensis", and "Scopaeocharax rhinodus" (Pisces: Teleostei: Characidae: Glandulocaudinae: Xenurobryconini)|last=Pecio|first=Anna|coauthors=Burns, John R.; Weitzman, Stanley H.|journal=Journal of Morphology|pages=216–226|year=2005|format=PDF |doi=10.1002/jmor.10299|volume=263]Many of the genera also have a gland situated in the
gill cavity called a "gill gland", asecondary sex characteristic found in sexually mature male glandulocaudines that is apparently suited to release chemical signals. No genus contains species that have glands and other species without glands. This gill gland is derived from anterior gill filaments of the first gill arch. Gland size and degree of gill modification varies with species. Though the true function of the gill glands has yet to be determined, they are probably used to release chemical signals into the gill current.There are many examples of
sexual dimorphism (differences in appearance between the genders). In "Corynopoma riisei ", the males have extended finnage (giving it the common name "swordtailed characin") as well as paddle-like extensions of the operculum. Many other species also have other secondary sex characteristics believed to be involved in courtship.Many of these characteristics are also shared with the tribe Compsurini in
Cheirodontinae . Though unrelated, this group contains inseminating species with caudal organs. However, the caudal organs and other similar characteristics are structured differently. They also share the elongate cytoplasmic collar binding the flagellum to the elongate nucleus at some stage of spermiogenesis, which was previously assumed to be exclusive to glandulocaudines. These fish also occasionally have gill glands.Courtship
Like other ostariophysans, glandulocaudines show a reaction to chemical signals in the water. Many ostariophysans have a fright reaction in response to an alarm substance. In "
Corynopoma riisei ", it has been shown that a sexually mature male's presence actually inhibits the maturation of immature males. In "C. riisei", the female is often situated parallel to and somewhat behind the male, which allows for chemical signals released from the male's gill glands to be carried directly to the female.Glandulocaudines have complex
courtship behavior. In "C. riisei", the male has paddle-shaped extensions of the operculum which can be extended perpendicular to its body and twitches and flutters due to movements of his body; the female follows and nips at these projections during courtship.cite journal|title=Novel Gill-Derived Gland in the Male Swordtail Characin, "Corynopoma riisei" (Teleostei: Characidae: Glandulocaudinae)|last=Burns|first=John R.|coauthors=Weitzman, Stanley J.|journal=Copeia |year=1996|pages=627–633|doi=10.2307/1447526|volume=1996]A croaking behavior is recorded in some species of "
Mimagoniates ". This behavior has a part in courtship as well. Courtship involves the male chasing and hovering near the female. As the male hovers, he will quickly swim to the surface and take a gulp of air and return, expelling the gas and making continuous, rhythmic pulses of croaking sounds, interrupted only by the male returning to the surface for more air. The fish alsozigzag s while hovering by swimming up and down, when the fish intends to resurface but does not. Croaking behavior may have evolved from a behavior called "nipping surface", a feeding behavior that occurs when the fish is searching for food; the fish often will gulp air when doing this. This gulping of air has no respiratory significance.cite journal|title=The Evolution of a Pattern of Sound Production Associated with Courtship in the Characid Fish, "Glandulocauda inequalis"|last=Nelson|first=Keith|journal=Evolution|year=1964|pages=526–540|doi=10.2307/2406207|volume=18 Note: This paper precedes the reclassification of "G. inequalis" under "Mimagoniates"]In the aquarium
Some species of Glandulocaudinae are important in the
aquarium trade.Herbert R. Axelrod has discussed the care of a number of species, including "Corynopoma riisei", "Gephyrocharax caucanus", "Mimagoniates microlepis ", "M. lateralis", "M. inequalis", "Pseudocorynopoma doriae", and "Tyttocharax madeirae". These species reach about 5-6 cm (about 2 in). However, "T. madeirae" reaches 2 cm (less than 1 in), while "P. doriae" reaches 8 cm (3 in). Like mosttetra s, they prefer to swim inschools ; some species may be nippy, and should be kept in groups to divide aggression. Many species are very active and will almost constantly swim, which translates to a larger aquarium. They have been bred in captivity.These fish may not be as easily weaned onto dry foods as other fish, and will appreciate
live food s. Some species appreciate cooler water than the averagetropical fish , so this should be kept in mind when maintaining some of these species. Also, many imported specimens, even if they seem healthy, may mysteriously waste away. Some species are delicate and are not easily collected or transported, or are rarely seen available.cite book | title = Exotic Tropical Fishes | last = Axelrod | first = Herbert, R. | authorlink = Herbert R. Axelrod | publisher = T.F.H. Publications | year = 1996 | ISBN = 0-87666-543-1]pecies
Species list is according to
FishBase .ITIS does not list Characin subfamilies as they believe subfamilies are likely to change. [ITIS|ID=638841|taxon=Glandulocaudinae|year=2007|date=13 Apr]Tribe Landonini
*"Landonia "
**"Landonia latidens " Eigenmann & Henn, 1914 Tribe Glandulocaudini
*"Glandulocauda "
**"Glandulocauda melanogenys " Eigenmann, 1911
**"Glandulocauda melanopleura " Eigenmann, 1911
*"Lophiobrycon "
**"Lophiobrycon weitzmani " Castro, Ribeira, Benine & Melo, 2003
*"Mimagoniates "
**"Mimagoniates barberi " Regan, 1907
**"Mimagoniates inequalis " (Eigenmann, 1911)
**"Mimagoniates lateralis " (Nichols, 1913)
**"Mimagoniates microlepis " (Steindachner, 1876)
**"Mimagoniates rheocharis " Menezes & Weitzman, 1990
**"Mimagoniates sylvicola " Menezes & Weitzman, 1990 Tribe Diapomini
*"Acrobrycon "
**"Acrobrycon ipanquianus " (Cope, 1877)
**"Acrobrycon tarijae " Fowler, 1940
*"Diapoma "
**"Diapoma speculiferum " Cope, 1894
**"Diapoma terofoli " (Géry, 1964)
*"Planaltina"
**"Planaltina britskii " Menezes, Weitzman & Burns, 2003
**"Planaltina glandipedis " Menezes, Weitzman & Burns, 2003
**"Planaltina myersi " Böhlke, 1954 Tribe Phenacobryconini
*"Phenacobrycon "
**"Phenacobrycon henni " (Eigenmann, 1914) Tribe Hysteronotini
*"Hysteronotus "
**"Hysteronotus megalostomus " Eigenmann, 1922
*"Pseudocorynopoma "
**"Pseudocorynopoma doriai " Perugia, 1891
**"Pseudocorynopoma heterandria " Eigenmann, 1914 Tribe Corynopomini
*"Corynopoma "
**"Corynopoma riisei " Gill, 1858
*"Gephyrocharax "
**"Gephyrocharax atracaudatus " (Meek & Hildebrand, 1912)
**"Gephyrocharax caucanus " Eigenmann, 1912
**"Gephyrocharax chaparae " Fowler, 1940
**"Gephyrocharax chocoensis " Eigenmann, 1912
**"Gephyrocharax intermedius " Meek & Hildebrand, 1916
**"Gephyrocharax major " Myers, 1929
**"Gephyrocharax martae " Dahl, 1943
**"Gephyrocharax melanocheir " Eigenmann, 1912
**"Gephyrocharax sinuensis " Dahl, 1964
**"Gephyrocharax valencia " Eigenmann, 1920
**"Gephyrocharax venezuelae " Schultz, 1944
**"Gephyrocharax whaleri " Hildebrand, 1938
*"Pterobrycon "
**"Pterobrycon landoni " Eigenmann, 1913
**"Pterobrycon myrnae " Bussing, 1974 Tribe Xenurobryconini
*"Argopleura "
**"Argopleura chocoensis " (Eigenmann, 1913)
**"Argopleura conventus " (Eigenmann, 1913)
**"Argopleura diquensis " (Eigenmann, 1913)
**"Argopleura magdalenensis " (Eigenmann, 1913
*"Chrysobrycon "
**"Chrysobrycon hesperus " (Böhlke, 1958)
**"Chrysobrycon myersi " (Weitzman & Thomerson, 1970)
*"Iotabrycon "
**"Iotabrycon praecox " Roberts, 1973
*"Ptychocharax "
**"Ptychocharax rhyacophila " Weitzman, Fink, Machado-Allison & Royero L., 1994
*"Scopaeocharax "
**"Scopaeocharax atopodus " (Böhlke, 1958)
**"Scopaeocharax rhinodus " (Böhlke, 1958)
*"Tyttocharax "
**"Tyttocharax cochui " (Ladiges, 1950)
**"Tyttocharax madeirae " Fowler, 1913
**"Tyttocharax tambopatensis " Weitzman & Ortega, 1995
*"Xenurobrycon "
**"Xenurobrycon coracoralinae " Moreira, 2005
**"Xenurobrycon heterodon " Weitzman & Fink, 1985
**"Xenurobrycon macropus " Myers & Miranda-Ribeiro, 1945
**"Xenurobrycon polyancistrus " Weitzman, 1987
**"Xenurobrycon pteropus " Weitzman & Fink, 1985References
Wikimedia Foundation. 2010.