Accelerator mass spectrometry

Accelerator mass spectrometry

Infobox chemical analysis
name = Accelerator mass spectrometry

caption =Accelerator mass spectrometer at Lawrence Livermore National Laboratory
acronym = AMS
classification =Mass spectrometry
analytes = Organic molecules
manufacturers =
related = Particle accelerator
hyphenated =

Accelerator mass spectrometry (AMS) differs from other forms of mass spectrometry in that it accelerates ions to extraordinarily high kinetic energies before mass analysis. The special strength of AMS among the mass spectrometric methods is its power to separate a rare isotope from an abundant neighboring mass ("abundance sensitivity" [Citation
chapter=abundance sensitivity (in mass spectrometry)
title=IUPAC Compendium of Chemical Terminology
publisher=International Union of Pure and Applied Chemistry
] ),e.g. 14C from 12C). The method allows to suppress molecular isobars completely and in many cases can separate atomic isobars (e.g. 14N from 14C) also. This makes possible the detection of naturally occurring, long-lived radio-isotopes such as 10Be, 36Cl, 26Al and 14C. Their typical isotopic abundance ranges from 10-12 to 10-18. AMS can outperform the competing technique of decay counting for all isotopes where the half life is long enough. cite journal |author=Budzikiewicz H, Grigsby RD |title=Mass spectrometry and isotopes: a century of research and discussion |journal=Mass spectrometry reviews |volume=25 |issue=1 |pages=146–57 |year=2006 |pmid=16134128 |doi=10.1002/mas.20061]

The method

Generally, negative ions are created (atoms are ionized) in an ion source. In fortunate cases this already allows the suppression of an unwanted isobar, which does not form negative ions (as 14N in the case of 14C measurements). The pre-accelerated ions are usually separated by a first mass spectrometer of sector-field type and enter an electrostatic "tandem accelerator". This is a large nuclear particle accelerator based on the principle of a Tandem van de Graaff Accelerator operating at 0.2 to many million volts with two stages operating in tandem to accelerate the particles. At the connecting point between the two stages, the ions change charge from negative to positive by passing through a thin layer of matter ("stripping ", either gas or a thin carbon foil). Molecules will break apart in this stripping stage. [cite journal | author = Litherland, A. E. | title = Ultrasensitive Mass Spectrometry with Accelerators | journal = Annual Review of Nuclear and Particle Science | year = 1980 | volume = 30 | pages = 437–473 | doi = 10.1146/annurev.ns.30.120180.002253] [cite journal | author = R. d. L. John | title = Mass spectrometry and geochronology | year = 1998 | journal = Mass Spectrometry Reviews | volume = 17 | issue = 2 | pages = 97–125 | doi = 10.1002/(SICI)1098-2787(1998)17:2<97::AID-MAS2>3.0.CO;2-J] . The complete suppression of molecular isobars (e.g. 13CH- in the case of 14C measurements) is one reason for the exceptional abundance sensitivity of AMS.Additionally, the impact strips off several of the ion's electrons, converting it into a positively charged ion. In the second half of the accelerator the now positively charged ion is accelerated away from the highly positive center of the electrostatic accelerator which previously attracted the negative ion. When the ions leave the accelerator they are positively charged and are moving at several percent of the speed of light. In a second stage of mass spectrometer, the fragments from the molecules are separated from the ions of interest. This spectrometer may exist of magnetic or electric sectors, and so called velocity selectors, which utilizes both electric fields and magnetic fields.After this state, no background is left, unless a stable (atomic) isobar forming negative ions exists (e.g. 36S if measuring 36Cl), which is not suppressed at all by the setup described so far. Thanks to the high energy of the ions, these can be separated by methods borrowed from nuclear physics, like degrader foils and gas-filled magnets.Individual ions are finally detected by single-ion counting (with silicon surface-barrier detectors, ionization chambers, and/or time-of-flight telescopes). Thanks to the high energy of the ions, these detectors can provide additional identification of background isobars by nuclear-charge determination.


The above is an example. There are other ways in which AMS is achieved; however, they all work based on improving mass selectivity and specificity by creating high kinetic energies before molecule destruction by stripping, followed by single-ion counting.


L.W. Alvarez and Robert Cornog of the United States first used an accelerator as a mass spectrometer in 1939 when they employed a cyclotron to demonstrate that 3He was stable; from this observation, they immediately (and correctly) concluded that the other mass-3 isotope tritium was radioactive. In 1977, inspired by this early work, Richard A. Muller at the Lawrence Berkeley Laboratory recognized that modern accelerators could accelerate radioactive particles to an energy where the background interferences could be separated using particle identification techniques. He published the seminal paper in Science (vol 196, pages 489-494, 1977) showing how accelerators (cyclotrons and linear) could be used for detection of tritium, radiocarbon (14C), and several other isotopes of scientific interest including 10Be; he also reported the first successful radioisotope date experimentally obtained using tritium (3H). His paper was the direct inspiration for other groups using cyclotrons (G. Raisbeck and F. Yiou, in France) and tandem linear accelerators (D. Nelson, R. Korteling, W. Stott at McMaster). K. Purser and colleagues also published the successful detection of radiocarbon using their tandem at Rochester. Soon afterwards the Berkeley and French teams reported the successful detection of 10Be, an isotope widely used in geology. Soon the accelerator technique, because it was about a factor of 1000 more sensitive, virtually supplanted the older “decay counting” methods for these and other radioisotopes.


The applications are many. AMS is most often employed to determine the concentration of 14C, e.g. by. Archaeologists for radiocarbon dating. An accelerator mass spectrometer is required, over other forms of mass spectrometry, because of their insufficient abundance sensitivity, and to resolve stable nitrogen-14 from radiocarbon. Due to the long half-life of 14C, decay counting requires significantly larger samples.10Be, 26Al, and 36Cl are used for exposure dating in geology.3H, 14C, 36Cl, and 129I are used as hydrological tracer.

Accelerator mass spectrometry is widely used in biomedical research.cite journal |author=Brown K, Dingley KH, Turteltaub KW |title=Accelerator mass spectrometry for biomedical research |journal=Meth. Enzymol. |volume=402 |issue= |pages=423–43 |year=2005 |pmid=16401518 |doi=10.1016/S0076-6879(05)02014-8] cite journal |author=Vogel JS |title=Accelerator mass spectrometry for quantitative in vivo tracing |journal=BioTechniques |volume=Suppl |issue= |pages=25–9 |year=2005 |pmid=16528913 |doi=] cite journal |author=Palmblad M, Buchholz BA, Hillegonds DJ, Vogel JS |title=Neuroscience and accelerator mass spectrometry |journal=Journal of mass spectrometry : JMS |volume=40 |issue=2 |pages=154–9 |year=2005 |pmid=15706618 |doi=10.1002/jms.734]



*cite book |author= |title=Archaeological results from accelerator dating: research contributions drawing on radiocarbon dates produced by the Oxford Radiocarbon Accelerator based on papers presented at the SERC sponsored conference Results and prospects of accelerator dating held in Oxford on October 1985 |publisher=Oxford University Committee for Archaeology |location=Oxford |year=1986 |pages= |isbn=0-947816-11-9 |oclc= |doi=
*cite book |author=Gove, H. E. |title=From Hiroshima to the iceman: the development and applications of accelerator mass spectrometry |publisher=Institute of Physics |location=London |year=1999 |pages= |isbn=0-7503-0557-6 |oclc= |doi=

*cite book |author=Tuniz, C. |title=Accelerator mass spectrometry: ultrasensitive analysis for global science |publisher=CRC Press |location=Boca Raton |year=1998 |pages= |isbn=0-8493-4538-3 |oclc= |doi=

External links

* [ Scripps Center for Mass Spectrometry]
* [ IUPAC list of related terms]
* [ Biomedical Research Benefits from Counting Small]

Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • accelerator mass spectrometry — noun A form of mass spectrometry in which ions are accelerated to extraordinarily high kinetic energies before mass analysis …   Wiktionary

  • Arizona Accelerator Mass Spectrometry Laboratory — focuses on the study of cosmogenic isotopes, and in particular the study of radiocarbon, or Carbon 14. As a laboratory, part of its aim is to function as a research center, training center, and general community resource. Its stated mission is… …   Wikipedia

  • Mass spectrometry — (MS) is an analytical technique that measures the mass to charge ratio of charged particles.[1] It is used for determining masses of particles, for determining the elemental composition of a sample or molecule, and for elucidating the chemical… …   Wikipedia

  • mass spectrometry — or mass spectroscopy Analytic technique by which chemical substances are identified by sorting gaseous ions by mass using electric and magnetic fields. A mass spectrometer uses electrical means to detect the sorted ions, while a mass spectrograph …   Universalium

  • Tandem mass spectrometry — Tandem mass spectrometry, also known as MS/MS, involves multiple steps of mass spectrometry selection, with some form of fragmentation occurring in between the stages. [IUPAC gold book definition of tandem mass spectrometer… …   Wikipedia

  • Isotope-ratio mass spectrometry — Isotope ratio mass spectrometer with gas bench in foreground Acronym IRMS Classification mass spectrometry Other techniques …   Wikipedia

  • Isotope ratio mass spectrometry — Infobox chemical analysis name = Isotope ratio mass spectrometry caption =Isotope ratio mass spectrometer with gas bench in foreground acronym = IRMS classification =mass spectrometry analytes = manufacturers = related = Accelerator mass… …   Wikipedia

  • Time-of-flight mass spectrometry — (TOFMS) is a method of mass spectrometry in which ions are accelerated by an electric field of known strength. [Stephens, W. E., [ A Pulsed Mass Spectrometer with Time Dispersion] Phys. Rev. , 1946, 69 …   Wikipedia

  • Mass spectrum — Electron ionization mass spectrum of toluene [4]. Note parent peak corresponding to molecular mass M = 92 (C7H8+) and highest peak at M 1 = 91 (C7H7+, quasi stable tropylium cation). A mass spectrum is an inten …   Wikipedia

  • Mass-to-charge ratio — Charge to Mass ratio SI quantity dimension: M/(I⋅T) SI unit: kg/C other units: Th The mass to charge ratio ratio (m/Q) is a physical quantity that is widely used in the electrodynamics of c …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”