- Morton number
-
- For Morton number in number theory, see Morton number (number theory).
In fluid dynamics, the Morton number (Mo) is a dimensionless number used together with the Eötvös number to characterize the shape of bubbles or drops moving in a surrounding fluid or continuous phase, c. The Morton number is defined as
where g is the acceleration of gravity, μc is the viscosity of the surrounding fluid, ρc the density of the surrounding fluid, Δρ the difference in density of the phases, and σ is the surface tension coefficient. For the case of a bubble with a negligible inner density the Morton number can be simplified to
The Morton number can also be expressed by using a combination of the Weber number, Froude number and Reynolds number,
The Froude number in the above expression is defined as
where V is a reference velocity and d is the equivalent diameter of the drop or bubble.
References
- Clift, R.; Grace, J. R.; Weber, M. E. (1978). Bubbles Drops and Particles. New York: Academic Press. ISBN 012176950X.
Dimensionless numbers in fluid dynamics Archimedes · Atwood · Bagnold · Bejan · Biot · Bond · Brinkman · Capillary · Cauchy · Damköhler · Dean · Deborah · Eckert · Ekman · Eötvös · Euler · Froude · Galilei · Graetz · Grashof · Görtler · Hagen · Keulegan–Carpenter · Knudsen · Laplace · Lewis · Mach · Marangoni · Morton · Nusselt · Ohnesorge · Péclet · Prandtl (magnetic · turbulent) · Rayleigh · Reynolds (magnetic) · Richardson · Roshko · Rossby · Rouse · Ruark · Schmidt · Sherwood · Shields · Stanton · Stokes · Strouhal · Suratman · Taylor · Ursell · Weber · Weissenberg · Womersley
Categories:- Dimensionless numbers
- Fluid dynamics
Wikimedia Foundation. 2010.