Weissenberg number

Weissenberg number

The Weissenberg number is a dimensionless number used in the study of viscoelastic flows. It is named after Karl Weissenberg. The dimensionless number is the ratio of the relaxation time of the fluid and a specific process time. For instance, in simple steady shear, the Weissenberg number, often abbreviated as Wi or We, is defined as the shear rate times the relaxation time

: ext{Wi} = dot{gamma} lambda.,

Since this number is obtained from scaling the evolution of the stress, it contains choices for the shear or elongation rate, and the length-scale. Therefore the exact definition of all non dimensional numbers should be given as well as the number itself.

While Wi similar to the Deborah number, and is often confused with it in technical literature, they have different physical interpretations. The Weissenberg number indicates the degree of anisotropy or orientation generated by the deformation, and is appropriate to describe flows with a constant stretch history, such as simple shear. In contrast, the Deborah number should be used to describe flows with a non-constant stretch history, and physically represents the rate at which elastic energy is stored or released.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Weissenberg — may refer to: *Weißenberg, a town in Saxony, Germany *the scene of the Battle of White Mountain *Karl Weissenberg (1893 1976), German physicist and founding rheologist, after whom the Weissenberg effect was named *Alexis Weissenberg (b. 1929),… …   Wikipedia

  • Karl Weissenberg — (1893 ndash;1976) was an Austrian physicist, notable for his contributions to rheology and crystallography. The Weissenberg effect was named after him, as was the Weissenberg number. He invented a Goniometer to study X ray diffraction of crystals …   Wikipedia

  • Nusselt number — In heat transfer at a boundary (surface) within a fluid, the Nusselt number is the ratio of convective to conductive heat transfer across (normal to) the boundary. Named after Wilhelm Nusselt, it is a dimensionless number. The conductive… …   Wikipedia

  • Rayleigh number — In fluid mechanics, the Rayleigh number for a fluid is a dimensionless number associated with buoyancy driven flow (also known as free convection or natural convection). When the Rayleigh number is below the critical value for that fluid, heat… …   Wikipedia

  • Magnetic Reynolds number — The Magnetic Reynolds number is a dimensionless group that occurs in magnetohydrodynamics. It gives an estimate of the effects of magnetic advection to magnetic diffusion, and is typically defined by: where U is a typical velocity scale of the… …   Wikipedia

  • Morton number — For Morton number in number theory, see Morton number (number theory). In fluid dynamics, the Morton number (Mo) is a dimensionless number used together with the Eötvös number to characterize the shape of bubbles or drops moving in a surrounding… …   Wikipedia

  • Ohnesorge number — The Ohnesorge number, Oh, is a dimensionless number that relates the viscous forces to inertial and surface tension forces. It is defined as: Where μ is the liquid viscosity ρ is the liquid density σ is the surface tension L is the characteristic …   Wikipedia

  • Keulegan–Carpenter number — The Keulegan–Carpenter number is important for the computation of the wave forces on offshore platforms. In fluid dynamics, the Keulegan–Carpenter number, also called the period number, is a dimensionless quantity describing the relative… …   Wikipedia

  • Deborah number — The Deborah number is a dimensionless number, often used in rheology to characterize the fluidity of materials under specific flow conditions. It was originally proposed by Markus Reiner, a professor at Technion in Israel, inspired by a verse in… …   Wikipedia

  • Stanton number — The Stanton number, St or CH, is a dimensionless number that measures the ratio of heat transferred into a fluid to the thermal capacity of fluid. It is used to characterize heat transfer in forced convection flows. where h = convection heat… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”