- Ohnesorge number
-
The Ohnesorge number, Oh, is a dimensionless number that relates the viscous forces to inertial and surface tension forces.
It is defined as:
Where
- μ is the liquid viscosity
- ρ is the liquid density
- σ is the surface tension
- L is the characteristic length scale (typically drop diameter)
- Re is the Reynolds number
- We is the Weber number
Applications
The Ohnesorge number for a 3 mm diameter rain drop is typically ~0.002. Larger Ohnesorge numbers indicate a greater influence of the viscosity .
This is often used to relate to free surface fluid dynamics such as dispersion of liquids in gases and in spray technology.[1][2]
References
- ^ Lefebvre, Arthur Henry (1989). Atomization and Sprays. New York and Washington, D.C.: Hemisphere Publishing Corp.. ISBN 978-0-89116-603-0. OCLC 18560155.
- ^ Ohnesorge, W (1936). "Formation of drops by nozzles and the breakup of liquid jets". Journal of Applied Mathematics and Mechanics 16: 355–358.
See also
- Laplace number - There is an inverse relationship, , between the Laplace number and the Ohnesorge number. It is more historically correct to use the Ohnesorge number, but often mathematically neater to use the Laplace number.
Dimensionless numbers in fluid dynamics Archimedes · Atwood · Bagnold · Bejan · Biot · Bond · Brinkman · Capillary · Cauchy · Damköhler · Dean · Deborah · Eckert · Ekman · Eötvös · Euler · Froude · Galilei · Graetz · Grashof · Görtler · Hagen · Keulegan–Carpenter · Knudsen · Laplace · Lewis · Mach · Marangoni · Morton · Nusselt · Ohnesorge · Péclet · Prandtl (magnetic · turbulent) · Rayleigh · Reynolds (magnetic) · Richardson · Roshko · Rossby · Rouse · Ruark · Schmidt · Sherwood · Shields · Stanton · Stokes · Strouhal · Suratman · Taylor · Ursell · Weber · Weissenberg · Womersley
Categories:- Dimensionless numbers
- Fluid dynamics
- Fluid dynamics stubs
Wikimedia Foundation. 2010.