Cotton tensor

Cotton tensor

In differential geometry, the Cotton tensor on a (pseudo)-Riemannian manifold of dimension n is a third-order tensor concomitant of the metric, like the Weyl tensor. The concept is named after Émile Cotton. Just as the vanishing of the Weyl tensor for n ≥ 4 is a necessary and sufficient condition for the manifold to be conformally flat, the same is true for the Cotton tensor for n = 3, while for n < 3 it is identically zero.

In coordinates, and denoting the Ricci tensor by Rij and the scalar curvature by R, the components of the Cotton tensor are

C_{ijk} = \nabla_{k} R_{ij} - \nabla_{j} R_{ik} + \frac{1}{2(n-1)}\left( \nabla_{j}Rg_{ik} -  \nabla_{k}Rg_{ij}\right).

The Cotton tensor can be regarded as a vector valued 2-form, and for n=3 one can use the Hodge star operator to convert this in to a second order trace free tensor density

C_i^j = \nabla_{k} \left( R_{li} - \frac{1}{4} Rg_{li}\right)\epsilon^{klj},

sometimes called the Cotton–York tensor.

The proof of the classical result that for n = 3 the vanishing of the Cotton tensor is equivalent the metric being conformally flat is given by Eisenhart using a standard integrability argument. This tensor density is uniquely characterized by its conformal properties coupled with the demand that it be differentiable for arbitrary metrics, as shown by Aldersley.

Contents

Properties

Conformal rescaling

Under conformal rescaling of the metric \tilde{g} = e^{2\omega} g for some scalar function ω the Cotton-York tensor transforms as

 \tilde{C} = C \; - \; \operatorname{grad} \, \omega \; \lrcorner \; W,[citation needed]

where the gradient is plugged into the symmetric part of the Weyl tensor W.

Symmetries

The Cotton tensor has the following symmetries:

C_{ijk} = - C_{ikj} \,

and therefore

C_{[ijk]} = 0. \,

In addition the Bianchi formula for the Weyl tensor for can be rewritten as

\delta W = (3-n) C, \,

where δ is the positive divergence in the first component of W.

References


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Cotton (disambiguation) — Cotton is a soft, staple fiber that can be spun and woven into a textile of the same name. Cotton may also refer to: Gossypium, the cotton plant Cotton (series), a series of video games Cotton (motorcycle), British motorcycle manufacturer Cotton… …   Wikipedia

  • Weyl tensor — In differential geometry, the Weyl curvature tensor, named after Hermann Weyl, is a measure of the curvature of spacetime or, more generally, a pseudo Riemannian manifold. Like the Riemann curvature tensor, the Weyl tensor expresses the tidal… …   Wikipedia

  • Conformal geometry — In mathematics, conformal geometry is the study of the set of angle preserving (conformal) transformations on a space. In two real dimensions, conformal geometry is precisely the geometry of Riemann surfaces. In more than two dimensions,… …   Wikipedia

  • List of mathematics articles (C) — NOTOC C C closed subgroup C minimal theory C normal subgroup C number C semiring C space C symmetry C* algebra C0 semigroup CA group Cabal (set theory) Cabibbo Kobayashi Maskawa matrix Cabinet projection Cable knot Cabri Geometry Cabtaxi number… …   Wikipedia

  • Conformally flat manifold — A (pseudo )Riemannian manifold is conformally flat if each point has a neighborhood that can be mapped to flat space by a conformal transformation. More formally, let (M, g) be a pseudo Riemannian manifold. Then (M, g) is conformally flat if for… …   Wikipedia

  • Isothermal coordinates — In mathematics, specifically in differential geometry, isothermal coordinates on a Riemannian manifold are local coordinates where the metric is conformal to the Euclidean metric. This means that in isothermalcoordinates, the Riemannian metric… …   Wikipedia

  • Тензор Вейля — Тензор кривизны Вейля это часть тензора кривизны Римана с нулевым следом. Другими словами, это тензор, удовлетворяющий всем свойствам симметрии тензора Римана с дополнительным условием что построенный по нему тензор Риччи равен нулю. Назван в… …   Википедия

  • Конформно евклидово многообразие — В дифференциальной геометрии, конформно евклидовым называется многообразие , в котором метрика конформно эквивалентна метрике плоского пространства в некоторой системе координат. Для положительно определённой метрики под плоским пространством… …   Википедия

  • Birefringence — Displacement of light rays with perpendicular polarization through a birefringent material …   Wikipedia

  • Tenseur (mathématiques) —  Pour l’article homonyme, voir Tenseur.  Les tenseurs sont des objets mathématiques issus de l algèbre multilinéaire permettant de généraliser les scalaires et les vecteurs. On les rencontre notamment en analyse vectorielle et en… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”