Orthogonal complement

Orthogonal complement

In the mathematical fields of linear algebra and functional analysis, the orthogonal complement W of a subspace W of an inner product space V is the set of all vectors in V that are orthogonal to every vector in W (Halmos 1974, p. 123):

W^\bot=\left\{x\in V : \langle x, y \rangle = 0 \mbox{ for all } y\in W \right\}.\,

Informally, it is called the perp, short for perpendicular complement.

Contents

Properties

The orthogonal complement is always closed in the metric topology. In finite-dimensional spaces, that is merely an instance of the fact that all subspaces of a vector space are closed. In infinite-dimensional Hilbert spaces, some subspaces are not closed, but all orthogonal complements are closed. In such spaces, the orthogonal complement of the orthogonal complement of W is the closure of W, i.e.,

W^{\bot\,\bot}=\overline{W}.

Some other useful properties that always hold are:

  • X = \overline{X},
  • if YX then XY,
  • XX = {0},
  • X ⊆ (X),
  • if Y is a closed linear subspace of a Hilbert space, then Y = Y.

The orthogonal complement generalizes to the annihilator, and gives a Galois connection on subsets of the inner product space, with associated closure operator the topological closure of the span.

Finite dimensions

For a finite dimensional inner product space of dimension n, the orthogonal complement of a k-dimensional subspace is an (n − k)-dimensional subspace, and the double orthogonal complement is the original subspace:

W^{\bot\,\bot}=W.

If A is an m × n matrix, where Row A, Col A, and Null A refer to the row space, column space, and null space of A (respectively), we have

\begin{align}
(\mbox{Row}\,A)^\bot &= \mbox{Null}\,A\\
(\mbox{Col}\,A)^\bot &= \mbox{Null}\,A^T.
\end{align}

Banach spaces

There is a natural analog of this notion in general Banach spaces. In this case one defines the orthogonal complement of W to be a subspace of the dual of V defined similarly as the annihilator

W^\bot = \left\{\,x\in V^* : \forall y\in W, x(y) = 0 \, \right\}.\,

It is always a closed subspace of V. There is also an analog of the double complement property. W⊥⊥ is now a subspace of V∗∗ (which is not identical to V). However, the reflexive spaces have a natural isomorphism i between V and V∗∗. In this case we have

i\overline{W} = W^{\bot\,\bot}.

This is a rather straightforward consequence of the Hahn–Banach theorem.

References

  • Halmos, Paul R. (1974), Finite-dimensional vector spaces, Berlin, New York: Springer-Verlag, ISBN 978-0-387-90093-3 

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Complement (mathematics) — Complement has a variety of uses in mathematics:* complement, an operation that transforms an integer into its additive inverse, useful for subtracting numbers when only addition is possible, or is easier * complement, a system for working with… …   Wikipedia

  • Complément orthogonal — En mathématiques, plus précisément en algèbre linéaire et en analyse fonctionnelle, le complément orthogonal d un sous espace vectoriel W d un espace préhilbertien V est l ensemble des vecteurs de V qui sont orthogonaux à tout vecteur de W, c est …   Wikipédia en Français

  • Complement — In many different fields, the complement of X is something that together with X makes a complete whole something that supplies what X lacks. Complement may refer to: Complement (linguistics), a word or phrase having a particular syntactic role… …   Wikipedia

  • Complement orthogonal — Complément orthogonal En mathématiques, plus précisément en algèbre linéaire et en analyse fonctionnelle, le complément orthogonal d un sous espace vectoriel W d un espace préhilbertien V est l ensemble des vecteurs de V qui sont orthogonaux à… …   Wikipédia en Français

  • Complément Orthogonal — En mathématiques, plus précisément en algèbre linéaire et en analyse fonctionnelle, le complément orthogonal d un sous espace vectoriel W d un espace préhilbertien V est l ensemble des vecteurs de V qui sont orthogonaux à tout vecteur de W, c est …   Wikipédia en Français

  • Orthogonal group — Group theory Group theory …   Wikipedia

  • Projection (linear algebra) — Orthogonal projection redirects here. For the technical drawing concept, see orthographic projection. For a concrete discussion of orthogonal projections in finite dimensional linear spaces, see vector projection. The transformation P is the… …   Wikipedia

  • Hilbert space — For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… …   Wikipedia

  • Orthogonality — The line segments AB and CD are orthogonal to each other. Orthogonality occurs when two things can vary independently, they are uncorrelated, or they are perpendicular. Contents 1 Mathematics …   Wikipedia

  • Compact operator on Hilbert space — In functional analysis, compact operators on Hilbert spaces are a direct extension of matrices: in the Hilbert spaces, they are precisely the closure of finite rank operators in the uniform operator topology. As such, results from matrix theory… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”