Gibbs-Duhem equation

Gibbs-Duhem equation

The Gibbs-Duhem equation in thermodynamics describes the relationship between changes in chemical potential for components in a thermodynamical system ["A to Z of Thermodynamics" Pierre Perrot ISBN 0198565569] :

: sum_{i=1}^I N_imathrm{d}mu_i = - Smathrm{d}T + Vmathrm{d}p ,

where N_i, is the number of moles of component i,, mathrm{d}mu_i, the incremental increase in chemical potential for this component, S, the entropy, T, the absolute temperature, V, volume and p, the pressure. It shows that in thermodynamics intensive properties are not independent but related, making it a mathematical statement of the state postulate. When pressure and temperature are variable, only I-1, of I, components have independent values for chemical potential and Gibbs' phase rule follows. The law is named after Josiah Gibbs and Pierre Duhem.

Derivation

Deriving the Gibbs-Duhem equation from basic thermodynamic state equations is straightforward ["Fundamentals of Engineering Thermodynamics, 3rd Edition" Michael J. Moran and Howard N. Shapiro, p. 538 ISBN 0-471-07681-3] . The total differential of the Gibbs free energy G, in terms of its natural variables is

:mathrm{d}G=left. frac{partial G}{partial p} ight | _{T,N}mathrm{d}p+left. frac{partial G}{partial T} ight | _{p,N}mathrm{d}T+sum_{i=1}^I left. frac{partial G}{partial N_i} ight | _{p,N_{j eq imathrm{d}N_i ,.

With the substitution of two of the Maxwell relations and the definition of chemical potential, this is transformed into:cite web |url=http://www.chem.arizona.edu/~salzmanr/480a/480ants/opensys/opensys.html |title=Open Systems |accessdate=2007-10-11 |last=Salzman |first=William R. |date=2001-08-21 |work=Chemical Thermodynamics |publisher=University of Arizona |language=English |archiveurl=http://web.archive.org/web/20070707224025/http://www.chem.arizona.edu/~salzmanr/480a/480ants/opensys/opensys.html |archivedate=2007-07-07]

:mathrm{d}G=V mathrm{d}p-S mathrm{d}T+sum_{i=1}^I mu_i mathrm{d}N_i ,

As shown in the Gibbs free energy article, the chemical potential is just another name for the partial molar (or just partial, depending on the units of N) Gibbs free energy, thus: G = sum_{i=1}^I mu_i N_i ,.

The total differential of this expression is

: mathrm{d}G = sum_{i=1}^I mu_i mathrm{d}N_i + sum_{i=1}^I N_i mathrm{d}mu_i ,

Subtracting the two expressions for the total differential of the Gibbs free energy gives the Gibbs-Duhem relation:

: sum_{i=1}^I N_imathrm{d}mu_i = - Smathrm{d}T + Vmathrm{d}p ,

Applications

By normalizing the above equation by the extent of a system, such as the total number of moles, the Gibbs-Duhem equation provides a relationship between the intensive variables of the system. For a simple system with I, different components, there will be I+1, independent parameters or "degrees of freedom". For example, a gas cylinder filled with nitrogen is at room temperature (298 K) and at 2500 psi, we can determine the gas density, entropy or any other intensive thermodynamic variable. If instead the cylinder contains a nitrogen/oxygen mixture, we require an additional piece of information, usually the ratio of oxygen-to-nitrogen.

If multiple phases of matter are present, the chemical potential across a phase boundary are equal. ["Fundamentals of Engineering Thermodynamics, 3rd Edition" Michael J. Moran and Howard N. Shapiro, p. 710 ISBN 0-471-07681-3] Combining expressions for the Gibbs-Duhem equation in each phase and assuming systematic equilibrium (i.e. that the temperature and pressure is constant throughout the system), we recover the Gibbs' phase rule.

One particularly useful expression arises when considering binary solutions ["The Properties of Gases and Liquids, 5th Edition" Poling, Prausnitz and O'Connell, p. 8.13, ISBN 0-07-011682-2 ] . At constant P (isobaric) and T (isothermal) it becomes:

:0= N_1mathrm{d}mu_1 + N_2mathrm{d}mu_2 ,

or, normalizing by total number of moles in the system N_1 + N_2 ,, substituting in the definition of activity coefficient gamma and using the identity x_1 + x_2 = 1,:

:x_1 left. frac{mathrm{d}ln gamma_1}{mathrm{d}x_1} ight |_{p,T}=x_2 left. frac{mathrm{d}ln gamma_2}{mathrm{d}x_2} ight |_{p,T} ,

This equation is instrumental in the calculation of thermodynamically consistent and thus more accurate expressions for the vapor pressure of a fluid mixture from limited experimental data.

External links

* A lecture from www.chem.neu.edu [http://www.chem.neu.edu/Courses/1382Budil/PartialMolarQuantities.htm Link]
* A lecture from www.chem.arizona.edu [http://www.chem.arizona.edu/~salzmanr/480a/480ants/opensys/opensys.html Link]
* Encyclopedia Britannica entry [http://www.britannica.com/eb/article-9036750/Gibbs-Duhem-equation link]

References


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Gibbs-Duhem equation — ▪ chemistry       thermodynamic relationship expressing changes in the chemical potential of a substance (or mixture of substances in a multicomponent system) in terms of changes in the temperature T and pressure P of the system. The chemical… …   Universalium

  • Équation de Gibbs-Duhem — Relation de Gibbs Duhem Cet article court présente un sujet plus amplement développé ici : Potentiel chimique. La relation de Gibbs Duhem est une relation de thermodynamique qui s applique à des systèmes thermodynamiques à l équilibre… …   Wikipédia en Français

  • DUHEM (P.) — Des trois volets de l’œuvre de Pierre Duhem, accomplie relativement en marge du milieu scientifique français de son époque, chacun aurait pu suffire à assurer sa renommée. Pionnier de la chimie physique et promoteur d’une thermodynamique générale …   Encyclopédie Universelle

  • Gibbs free energy — Thermodynamics …   Wikipedia

  • Duhem —  Cette page d’homonymie répertorie des personnes (réelles ou fictives) partageant un même patronyme. Le patronyme Duhem indique une provenance de Hem. Patronyme Paul Duhem (1919 1999), peintre belge d art brut Pierre Duhem (1861 1916),… …   Wikipédia en Français

  • Josiah Willard Gibbs — Infobox Scientist box width = 300px name = J. Willard Gibbs image size = 300px caption = Josiah Willard Gibbs birth date = birth date|1839|2|11|mf=y birth place = New Haven, Connecticut, USA death date = death date and… …   Wikipedia

  • Pierre Duhem — Full name Pierre Duhem Born 9 June 1861 Paris, France Died 14 September 1916 Cabrespine, France Era …   Wikipedia

  • GIBBS (J. W.) — Physicien et mathématicien américain, J. W. Gibbs est né à New Haven dans le Connecticut le 11 février 1839; il y meurt le 28 avril 1903, après y avoir passé presque toute son existence. Issu d’une famille de lettrés, il poursuit des études de… …   Encyclopédie Universelle

  • Pierre Duhem — Physicien, historien et philosophe des sciences Naissance 10 juin 1861 Paris (France) Décès 14 septembre 191 …   Wikipédia en Français

  • liquid — liquidly, adv. liquidness, n. /lik wid/, adj. 1. composed of molecules that move freely among themselves but do not tend to separate like those of gases; neither gaseous nor solid. 2. of, pertaining to, or consisting of liquids: a liquid diet. 3 …   Universalium

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”