Incomplete Cholesky factorization

Incomplete Cholesky factorization

In numerical analysis, a field within mathematics, an incomplete Cholesky factorization of a symmetric positive definite matrix is a sparse approximation of the Cholesky factorization. Incomplete Cholesky factorization are often used as a preconditioner for algorithms like the conjugate gradient method.

The Cholesky factorization of a positive definite matrix "A" is "A" = "LL"* where "L" is a lower triangular matrix. An incomplete Cholesky factorization is given by a sparse lower triangular matrix "K" that is in some sense close to "L". The corresponding preconditioner is "KK"*.

One popular way to find such a matrix "K" is to use the algorithm for finding the exact Cholesky decomposition, except that any entry is set to zero if the corresponding entry in "A" is also zero. This gives an incomplete Cholesky factorization which is as sparse as the matrix "A".

References

*. See Section 10.3.2.


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Unvollständige Cholesky-Zerlegung — Als ILU Zerlegung (von incomplete LU Decomposition) oder unvollständige LU Zerlegung bezeichnet man in der numerischen Mathematik die fehlerbehaftete Zerlegung einer Matrix in das Produkt einer unteren Dreiecksmatrix L und einer oberen… …   Deutsch Wikipedia

  • List of numerical analysis topics — This is a list of numerical analysis topics, by Wikipedia page. Contents 1 General 2 Error 3 Elementary and special functions 4 Numerical linear algebra …   Wikipedia

  • List of mathematics articles (I) — NOTOC Ia IA automorphism ICER Icosagon Icosahedral 120 cell Icosahedral prism Icosahedral symmetry Icosahedron Icosian Calculus Icosian game Icosidodecadodecahedron Icosidodecahedron Icositetrachoric honeycomb Icositruncated dodecadodecahedron… …   Wikipedia

  • Preconditioner — In linear algebra and numerical analysis, a preconditioner P of a matrix A is a matrix such that P −1 A has a smaller condition number than A .Preconditioners are useful when using an iterative method to solve a large, sparse linear system : Ax …   Wikipedia

  • Minimum degree algorithm — In numerical analysis the minimum degree algorithm is an algorithm used to permute the rows and columns of a symmetric sparse matrix before applying the Cholesky decomposition, to reduce the number of non zeros in the Cholesky factor. This… …   Wikipedia

  • Kalman filter — Roles of the variables in the Kalman filter. (Larger image here) In statistics, the Kalman filter is a mathematical method named after Rudolf E. Kálmán. Its purpose is to use measurements observed over time, containing noise (random variations)… …   Wikipedia

  • Unvollständige LR-Zerlegung — Als ILU Zerlegung (von incomplete LU Decomposition) oder unvollständige LU Zerlegung bezeichnet man in der numerischen Mathematik die fehlerbehaftete Zerlegung einer Matrix in das Produkt einer unteren Dreiecksmatrix L und einer oberen… …   Deutsch Wikipedia

  • Unvollständige LU-Zerlegung — Als ILU Zerlegung (von incomplete LU Decomposition) oder unvollständige LU Zerlegung bezeichnet man in der numerischen Mathematik die fehlerbehaftete Zerlegung einer Matrix in das Produkt einer unteren Dreiecksmatrix L und einer oberen… …   Deutsch Wikipedia

  • ILU-Zerlegung — Als ILU Zerlegung (von incomplete LU Decomposition) oder unvollständige LU Zerlegung bezeichnet man in der numerischen Mathematik die fehlerbehaftete Zerlegung einer Matrix in das Produkt einer unteren Dreiecksmatrix L und einer oberen… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
https://en-academic.com/dic.nsf/enwiki/4469705 Do a right-click on the link above
and select “Copy Link”