Root mean square

Root mean square

In mathematics, the root mean square (abbreviated RMS or rms), also known as the quadratic mean, is a statistical measure of the magnitude of a varying quantity. It is especially useful when variates are positive and negative, e.g., sinusoids.

It can be calculated for a series of discrete values or for a continuously varying function. The name comes from the fact that it is the square root of the mean of the squares of the values. It is a special case of the power mean with the exponent "p" = 2.

Definition

$x_ ext\left\{rms\right\} = sqrt\left\{ langle x_1^2 + x_2^2 + x_3^2 +...+ x_N^2 angle/N\right\} ,!$

Ways of calculating the root mean square

The RMS of a collection of $n$ values $\left\{x_1,x_2,dots,x_n\right\}$ is

:$x_\left\{mathrm\left\{rms = sqrt$1 over n} sum_{i=1}^{n} x_i^2} =sqrt x_1^2 + x_2^2 + cdots + x_n^2} over n}

The corresponding formula for a continuous function $f\left(t\right)$ defined over the interval $T_1 le t le T_2$ is

:$f_\left\{mathrm\left\{rms$ = sqrt 1 over {T_2-T_1 {int_{T_1}^{T_2} { [f(t)] }^2, dt

The RMS of a periodic function is equal to the RMS of one period of the function. The RMS value of a continuous function or signal can be approximated by taking the RMS of a series of equally spaced samples. Additionally, the RMS value of various waveforms can also be determined without calculus, as shown by Cartwright [citation
last=Cartwright
first=Kenneth V
title=Determining the Effective or RMS Voltage of Various Waveforms without Calculus
journal=Technology Interface
volume=8
issue=1
pages=20 pages
date=Fall 2007
year=2007
url=http://technologyinterface.nmsu.edu/Fall07/
] .

Uses

The RMS value of a function is often used in physics and electrical engineering.

Average electrical power

Engineers often need to know the power, $P$, dissipated by an electrical resistance, $R$. It is easy to do the calculation when there is a constant current, $I$, through the resistance. For a load of R ohms, power is defined simply as:

:$P = I^2 R.,!$

However, if the current is a time-varying function, $I\left(t\right)$, this formula must be extended to reflect the fact that the current (and thus the instantaneous power) is varying over time. If the function is periodic (such as household AC power), it is nonetheless still meaningful to talk about the "average" power dissipated over time, which we calculate by taking the simple average of the power at each instant in the waveform or, equivalently, the squared current. That is,:So, the RMS value, $I_mathrm\left\{RMS\right\}$, of the function $I\left(t\right)$ is the constant signal that yields the same average power dissipation.

We can also show by the same method that for a time-varying voltage, $V\left(t\right)$, with RMS value $V_mathrm\left\{RMS\right\}$,

:$P_mathrm\left\{avg\right\} = \left\{\left(V_mathrm\left\{RMS\right\}\right)^2over R\right\}.,!$

This equation can be used for any periodic waveform, such as a sinusoidal or sawtooth waveform, allowing us to calculate the mean power delivered into a specified load.

By taking the square root of both these equations and multiplying them together, we get the equation

:$P_mathrm\left\{avg\right\} = V_mathrm\left\{RMS\right\}I_mathrm\left\{RMS\right\}.,!$

Both derivations depend on "voltage and current being proportional" (i.e., the load, "R", is purely resistive). Reactive loads (i.e., loads capable of not just dissipating energy but also storing it) are discussed under the topic of AC power.

In the common case of alternating current when $I\left(t\right)$ is a sinusoidal current, as is approximately true for mains power, the RMS value is easy to calculate from the continuous case equation above. If we define $I_\left\{mathrm\left\{p$ to be the amplitude of the current, then:

:$I_\left\{mathrm\left\{RMS = sqrt$1 over {T_2-T_1 {int_{T_1}^{T_2} {(I_mathrm{p}sin(omega t)}, })^2 dt}.,!

where "t" is time and "ω" is the angular frequency ("ω" = 2π/"T", where"T" is the period of the wave).

Since $I_\left\{mathrm\left\{p$ is a positive constant:

:$I_\left\{mathrm\left\{RMS = I_mathrm\left\{p\right\}sqrt$1 over {T_2-T_1 {int_{T_1}^{T_2} {sin^2(omega t)}, dt.

Using a trigonomentric identity to eliminate squaring of trig function:

:$I_\left\{mathrm\left\{RMS = I_mathrm\left\{p\right\}sqrt$1 over {T_2-T_1 {int_{T_1}^{T_2} 1 - cos(2omega t) over 2, dt

:$I_\left\{mathrm\left\{RMS = I_mathrm\left\{p\right\}sqrt$1 over {T_2-T_1 left [ t over 2} -{ sin(2omega t) over 4omega ight ] _{T_1}^{T_2} }

but since the interval is a whole number of complete cycles (per definition of RMS), the $sin$ terms will cancel, leaving:

:$I_\left\{mathrm\left\{RMS = I_mathrm\left\{p\right\}sqrt$1 over {T_2-T_1 left [ t over 2 ight ] _{T_1}^{T_2} } = I_mathrm{p}sqrt 1 over {T_2-T_1 {T_2-T_1} over 2 } = {I_mathrm{p} over {sqrt 2.

A similar analysis leads to the analogous equation for voltage:

:$V_\left\{mathrm\left\{RMS = \left\{V_mathrm\left\{p\right\} over \left\{sqrt 2.$

Because of their usefulness in carrying out power calculations, listed voltages for power outlets, e.g. 120 V (USA) or 230 V (Europe), are almost always quoted in RMS values, and not peak values. Peak values can be calculated from RMS values from the above formula, which implies "V""p" = "V"RMS &times; √2, assuming the source is a pure sine wave. Thus the peak value of the mains voltage in the USA is about 120 &times; √2, or about 170 volts. The peak-to-peak voltage, being twice this, is about 340 volts. A similar calculation indicates that the peak-to-peak mains voltage in Europe is about 650 volts.

It is also possible to calculate the RMS power of a signal. By analogy with RMS voltage and RMS current, RMS power is the square root of the mean of the square of the power over some specified time period. This quantity, which would be expressed in units of watts (RMS), has no physical significance. However, the term "RMS power" is sometimes used in the audio industry as a synonym for "mean power" or "average power". For a discussion of audio power measurements and their shortcomings, see Audio power.

Amplifier power efficiency

The electrical efficiency of an electronic amplifier is the ratio of mean output power to mean input power. As discussed, if the output is resistive, the mean output power can be found using the RMS values of output current and voltage signals. However, the mean value of the current should be used to calculate the input power. That is, the power delivered by the amplifier supplied by constant voltage $V_\left\{CC\right\}$ is :$P_mathrm\left\{input\right\}\left(t\right) = I_Q V_\left\{CC\right\} + I_mathrm\left\{out\right\}\left(t\right) V_\left\{CC\right\},$where $I_Q$ is the amplifier's operating current. Clearly, because $V_\left\{CC\right\}$ is constant, the time average of $P_mathrm\left\{input\right\}$ depends on the time "average" value of $I_mathrm\left\{out\right\}$ and not its RMS value. That is,:$langle P_mathrm\left\{input\right\}\left(t\right) angle = I_Q V_\left\{CC\right\} + langle I_mathrm\left\{out\right\}\left(t\right) angle V_\left\{CC\right\},$

Root mean square velocity

In physics, the root mean square velocity is defined as the square root of the average velocity-squared of the molecules in a gas. The RMS velocity of an ideal gas is calculated using the following equation:

:$\left\{v_mathrm\left\{RMS = \left\{sqrt\left\{3RT over \left\{M\right\}$

where $R$ represents the ideal gas constant (in this case, 8.314 J/(mol⋅K)), $T$ is the temperature of the gas in kelvins, and $M$ is the molar mass of the compound in kilograms per mole. Note that the unit of mass is in kilograms per mole because the joule is given in kilogram meters squared per second squared.

Relationship to the arithmetic mean and the standard deviation

If is the arithmetic mean and $sigma_\left\{x\right\}$ is the standard deviation of a population (the equation is different when $sigma_\left\{x\right\}$ is for a sample) then: :

From this it is clear that the RMS value is always greater than or equal to the average, in that the RMS includes the "error" / square deviation as well.

Physical scientists often use the term "root mean square" as a synonym for standard deviation when referring to the square root of the mean squared deviation of a signal from a given baseline or fit. This is useful for electrical engineers in calculating the "AC only" RMS of a signal. Standard deviation being the root mean square of a signal's variation about the mean, rather than about 0, the DC component is removed (i.e. RMS(signal) = Stdev(signal) if the mean signal is 0).

ee also

* Generalized mean
* L2 norm
* Least squares
* Root mean square speed
* Root mean square deviation (or error)
* Table of mathematical symbols

References

* [http://www.easycalculation.com/statistics/root-mean-square.php RMS calculator]
* [http://www.hifi-writer.com/he/misc/rmspower.htm A case for why RMS is a misnomer when applied to audio power]
* [http://www.opamp-electronics.com/tutorials/measurements_of_ac_magnitude_2_01_03.htm RMS, Peak and Average for some waveforms]
* [http://phy.hk/wiki/englishhtm/Rms.htm A Java applet on learning RMS]

Wikimedia Foundation. 2010.

Look at other dictionaries:

• root mean square — root′ mean′ square′ n. math. the square root of the arithmetic mean of the squares of the numbers in a given set of numbers Abbr.: rms …   From formal English to slang

• root mean square — ► NOUN Mathematics ▪ the square root of the arithmetic mean of the squares of a set of values …   English terms dictionary

• root mean square — n. Statistics the value of a quantity or the effective value of a periodic quantity, as a current, equal to the square root of the average (arithmetic mean) of the squares of a set of values …   English World dictionary

• Root Mean Square — der englische Ausdruck für Quadratisches Mittel für Quadratisches Mittel in der Elektrotechnik siehe Effektivwert Diese Seite ist eine Begriffsklärung zur Unterscheidung mehrerer mit demselben Wort bezeichneter Beg …   Deutsch Wikipedia

• root mean square — Math. the square root of the arithmetic mean of the squares of the numbers in a given set of numbers. Abbr.: rms [1890 95] * * * root mean square noun The square root of the sum of the squares of a set of quantities divided by the total number of …   Useful english dictionary

• Root mean square — Unter dem Effektivwert (Abk: RMS englisch: root mean square) versteht man in der Elektrotechnik den quadratischen Mittelwert eines zeitlich veränderlichen Signals. Intention bei der Einführung des Begriffes ist es, den Wert derjenigen… …   Deutsch Wikipedia

• root mean square — (rms)    a notation used after various measurements to indicate that the root mean square method has been used to measure or compute an average value for the measurement. Usually the quantity being measured varies in a periodic way; typical… …   Dictionary of units of measurement

• Root mean square speed — is the measure of the speed of particles in a gas that is most convenient for problem solving within the kinetic theory of gases. It is given by the formula:v {rms} = sqrt 3RT}over{M mwhere vrms is the root mean square speed, Mm is the molar mass …   Wikipedia

• Root-mean-square deviation — For the application of root mean square deviation to bioinformatics, see Root mean square deviation (bioinformatics). The root mean square deviation (RMSD) or root mean square error (RMSE) is a frequently used measure of the differences between… …   Wikipedia

• Root mean square deviation — The root mean square deviation (RMSD) ( also root mean square error (RMSE) ) is a frequently used measure of the differences between values predicted by a model or an estimator and the values actually observed from the thing being modeled or… …   Wikipedia