Polyphase matrix

Polyphase matrix

In signal processing,a polyphase matrix is a matrix whose elements are filter masks.It represents a filter bank as it is usedin sub-band coders alias discrete wavelet transforms.Gilbert Strang and Truong Nguyen."Wavelets and Filter Banks".Wellesley-Cambridge Press, 1997.ISBN 0-9614088-7-1]

If h,g are two filters,then one level the traditional wavelet transformmaps an input signal a_0 to two output signals a_1, d_1,each of the half length::a_1 = (hcdot a_0) downarrow 2:d_1 = (gcdot a_0) downarrow 2Note, that the dot means polynomial multiplication, i.e. convolution anddownarrow means downsampling.

If the above formula is implemented directly, you will compute valuesthat are subsequently flushed by the down-sampling.You can avoid that by splitting the filters and the signalinto even and odd indexed values before the transformation.:egin{array}{rclcrcl}h_{mbox{e &=& h downarrow 2 &qquad& a_{0,mbox{e &=& a_0 downarrow 2 \h_{mbox{o &=& (h leftarrow 1) downarrow 2 && a_{0,mbox{o &=& (a_0 leftarrow 1) downarrow 2end{array}The arrows leftarrow and ightarrowdenote left and right shifting, respectively.They shall have the same precedence like convolution,because they are in fact convolutions with a shifted discrete delta impulse.:delta = (dots,0,0,underset{0-mbox{th position{1},0,0,dots)The wavelet transformation reformulated to the split filters is::a_1 = h_{mbox{ecdot a_{0,mbox{e + h_{mbox{ocdot a_{0,mbox{o ightarrow 1:d_1 = g_{mbox{ecdot a_{0,mbox{e + g_{mbox{ocdot a_{0,mbox{o ightarrow 1This can be written as matrix-vector-multiplication:egin{array}{rcl}P &=&egin{pmatrix}h_{mbox{e & h_{mbox{o ightarrow 1 \g_{mbox{e & g_{mbox{o ightarrow 1end{pmatrix}\egin{pmatrix}a_1 \ d_1end{pmatrix}&=&Pcdotegin{pmatrix}a_{0,mbox{e \a_{0,mbox{oend{pmatrix}end{array}This matrix P is the polyphase matrix.

Of course, a polyphase matrix can have any size,it need not to have square shape.That is, the principle scales well to any filterbanks,
multiwavelets,wavelet transforms based on fractional refinements.

Properties

The representation of subband coding by the polyphase matrixis more than about write simplification.It allows to adapt many results from matrix theory and module theory.The following properties are explained for a 2 imes 2 matrix,but they scale equally to higher dimensions.

Invertibility / Perfect reconstruction

The case that a polyphase matrix allows reconstruction of a processed signal from the filtered data,is called perfect reconstruction property.Mathematically this is equivalent to invertibility.According to the theorem of invertibilityof a matrix over a ring,the polyphase matrix is invertible if and only ifthe determinant of the polyphase matrix is a Kronecker delta,which is zero everywhere except of one value.:det P=h_{mbox{e cdot g_{mbox{o - h_{mbox{o cdot g_{mbox{e:exists A Acdot P = Iiffexists c exists k det P = ccdot delta ightarrow k By Cramer's rule the inverse of Pcan be given immediately.:P^{-1}cdotdet P =egin{pmatrix} g_{mbox{o ightarrow 1 & - h_{mbox{o ightarrow 1 \- g_{mbox{e & h_{mbox{eend{pmatrix}

Orthogonality

Orthogonality means that the adjoint matrix P^*is also the inverse matrix of P.The adjoint matrix is the transposed matrix with adjoint filters.:P^* =egin{pmatrix}h_{mbox{e^* & g_{mbox{e^* \h_{mbox{o^* leftarrow 1 & g_{mbox{o^* leftarrow 1end{pmatrix}

It implies, that the Euclidean norm of the input signals is preserved.That is, the according wavelet transform is an isometry.:||a_1||_2^2 + ||d_1||_2^2 = ||a_0||_2^2

The orthogonality condition:P cdot P^* = Ican be written out:egin{array}{rcl}h_{mbox{e^* cdot h_{mbox{e + h_{mbox{o^* cdot h_{mbox{o &=& delta \g_{mbox{e^* cdot g_{mbox{e + g_{mbox{o^* cdot g_{mbox{o &=& delta \h_{mbox{e^* cdot g_{mbox{e + h_{mbox{o^* cdot g_{mbox{o &=& 0 quad.end{array}

Operator norm

For non-orthogonal polyphase matrices the question ariseswhat Euclidean norms the output can assume.This can be bounded by the help of the operator norm.:forall x
|Pcdot x||_2 inleft [||P^{-1}||_2^{-1}cdot||x||_2, ||P||_2cdot||x||_2 ight] For the 2 imes 2 polyphase matrixthe Euclidean operator norm can be given explicitlyusing the Frobenius norm ||cdot||_F and the z transform Z:Henning Thielemann."Adaptive construction of wavelets for image compression".Diploma thesis, Martin-Luther-Universität Halle-Wittenberg,Fachbereich Mathematik/Informatik, 2001.http://edoc.bibliothek.uni-halle.de/servlets/DocumentServlet?id=2134] :egin{array}{rcl}p(z) &=& frac{1}{2}cdot ||Z P(z)||_F^2 \q(z) &=& |det (Z P(z))|^2 \
|P||_2 &=& maxleft{sqrt{p(z)+sqrt{p(z)^2-q(z) : zinmathbb{C} land |z|=1 ight} \
|P^{-1}||_2^{-1} &=& minleft{sqrt{p(z)-sqrt{p(z)^2-q(z) : zinmathbb{C} land |z|=1 ight}end{array}

This is a special case of the n imes n matrixwhere the operator norm can be obtained via z transformand the spectral radius of a matrix or the according spectral norm.:egin{array}{rcl}
|P||_2 &=& sqrt{maxleft{lambda_{mbox{max(Z P^*(z)cdot Z P(z)) : zinmathbb{C} land |z|=1 ight\ &=& maxleft{||Z P(z)||_2 : zinmathbb{C} land |z|=1 ight}\
|P^{-1}||_2^{-1} &=& sqrt{minleft{lambda_{mbox{min(Z P^*(z)cdot Z P(z)) : zinmathbb{C} land |z|=1 ight \end{array}A signal, where these bounds are assumedcan be derived from the eigenvectorcorresponding to the maximizing and minimizing eigenvalue.

Lifting scheme

The concept of the polyphase matrix allows matrix decomposition.For instance the decomposition into addition matricesleads to the lifting scheme.Ingrid Daubechies and Wim Sweldens."Factoring wavelet transforms into lifting steps".J. Fourier Anal. Appl., 4(3):245--267, 1998.http://cm.bell-labs.com/who/wim/papers/factor/index.html] However, classical matrix decompositions like LUand QR decomposition cannot be applied immediately,because the filters form a ring with respect to convolution,not a field.

References


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Polyphase — can refer to: * Polyphase system, in electrical engineering * Polyphase matrix, in signal processing, used for polyphase filters and polyphase FFT (see Filter bank) …   Wikipedia

  • Filter bank — A filter bank is an array of band pass filters that separates the input signal into several components, each one carrying a single frequency subband of the original signal. It also is desirable to design the filter bank in such a way that… …   Wikipedia

  • List of mathematics articles (P) — NOTOC P P = NP problem P adic analysis P adic number P adic order P compact group P group P² irreducible P Laplacian P matrix P rep P value P vector P y method Pacific Journal of Mathematics Package merge algorithm Packed storage matrix Packing… …   Wikipedia

  • Lifting scheme — The lifting scheme is a technique for both designing wavelets and performing the discrete wavelet transform.Actually it is worthwhile to merge these steps and design the wavelet filters while performing the wavelet transform.This is then called… …   Wikipedia

  • Lifting En Ondelettes — Un lifting en ondelettes est, en mathématiques, un schéma d’implantation d’une transformation en ondelettes un peu différent de celui plus habituel réalisé par les bancs de filtres. Le lifting en ondelettes est l’expression retenue pour désigner… …   Wikipédia en Français

  • Lifting en ondelettes — Un lifting en ondelettes est, en mathématiques, un schéma d’implantation d’une transformation en ondelettes un peu différent de celui plus habituel réalisé par les bancs de filtres. Le lifting en ondelettes est l’expression retenue pour désigner… …   Wikipédia en Français

  • List of terms relating to algorithms and data structures — The [http://www.nist.gov/dads/ NIST Dictionary of Algorithms and Data Structures] is a reference work maintained by the U.S. National Institute of Standards and Technology. It defines a large number of terms relating to algorithms and data… …   Wikipedia

  • Список терминов, относящихся к алгоритмам и структурам данных —   Это служебный список статей, созданный для координации работ по развитию темы.   Данное предупреждение не устанавливается на информационные списки и глоссарии …   Википедия

  • Список терминов — Список терминов, относящихся к алгоритмам и структурам данных   Это сл …   Википедия

  • Fibonacci number — A tiling with squares whose sides are successive Fibonacci numbers in length …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”