# Kronecker delta

Kronecker delta

In mathematics, the Kronecker delta or Kronecker's delta, named after Leopold Kronecker (1823-1891), is a function of two variables, usually integers, which is 1 if they are equal, and 0 otherwise. So, for example, $delta_\left\{12\right\} = 0$, but $delta_\left\{33\right\} = 1$. It is written as the symbol δij, and treated as a notational shorthand rather than as a function.

:

Alternate notation

Using the Iverson bracket:: $delta_\left\{ij\right\} = \left[i=j \right] .,$

Often, the notation $delta_i$ is used.

:

In linear algebra, it can be thought of as a tensor, and is written $delta^i_j$.

Digital signal processing

Similarly, in digital signal processing, the same concept is represented as a function on $mathbb\left\{Z\right\}$ (the integers):

The function is referred to as an "impulse", or "unit impulse". And when it stimulates a signal processing element, the output is called the impulse response of the element.

Properties of the delta function

The Kronecker delta has the so-called "sifting" property that for $jinmathbb Z$: :$sum_\left\{i=-infty\right\}^infty a_i delta_\left\{ij\right\} =a_j.$and if the integers are viewed as a measure space, endowed with the counting measure, then this property coincides with the defining property of the Dirac delta function:$int_\left\{-infty\right\}^infty delta\left(x-y\right)f\left(x\right) dx=f\left(y\right),$and in fact Dirac's delta was named after the Kronecker delta because of this analogous property. In signal processing it is usually the context (discrete or continuous time) that distinguishes the Kronecker and Dirac "functions". And by convention, $delta\left(t\right),$ generally indicates continuous time (Dirac), whereas arguments like "i", "j", "k", "l", "m", and "n" are usually reserved for discrete time (Kronecker). Another common practice is to represent discrete sequences with square brackets; thus: $delta \left[n\right] ,$. It is important to note that the Kronecker delta is not the result of sampling the Dirac delta function.

The Kronecker delta is used in many areas of mathematics.

Linear algebra

In linear algebra, the identity matrix can be written as $\left(delta_\left\{ij\right\}\right)_\left\{i,j=1\right\}^n,$.

If it is considered as a tensor, the Kronecker tensor, it can be written$delta^i_j$ with a covariant index "j" and contravariant index "i".

This (1,1) tensor represents:
* the identity matrix, considered as a linear mapping
* the trace
* the inner product $V^* otimes V o K$
* the map $K o V^* otimes V$, representing scalar multiplication as a sum of outer products

Extensions of the delta function

In the same fashion, we may define an analogous, multi-dimensional function of many variables

:$delta^\left\{j_1 j_2 dots j_n\right\}_\left\{i_1 i_2 dots i_n\right\} = prod_\left\{k=1\right\}^n delta_\left\{i_k j_k\right\}.$

This function takes the value 1 if and only if all the upper indices match the corresponding lower ones, and the value zero otherwise.

Integral representations

For any integer "n", using a standard residue calculation we can write an integral representation for the Kronecker delta as

:$delta_\left\{x,n\right\} = frac1\left\{2pi i\right\} oint z^\left\{x-n-1\right\} dz,$

where the contour of the integral goes counterclockwise around zero. This representation is also equivalent to

:$delta_\left\{x,n\right\} = frac1\left\{2pi\right\} int_0^\left\{2pi\right\} e^\left\{i\left(x-n\right)varphi\right\} dvarphi,$

by a rotation in the complex plane.

ee also

*Levi-Civita symbol
*Dirac measure
*OR gate

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• Kronecker-Delta — Das Kronecker Delta ist ein mathematisches Zeichen, das durch ein kleines Delta mit zwei Indizes (typischerweise ) dargestellt wird und nach Leopold Kronecker benannt ist. Es wird manchmal auch als Kronecker Symbol bezeichnet, obwohl es noch ein… …   Deutsch Wikipedia

• Kronecker delta — noun Etymology: Leopold Kronecker died 1891 German mathematician Date: 1926 a function of two variables that is 1 when the variables have the same value and is 0 when they have different values …   New Collegiate Dictionary

• Kronecker delta — Math. a function of two variables, i and j, which equals 1 when the variables have the same value, i = j, and equals 0 when the variables have different values. [1925 30; named after L. KRONECKER] * * * …   Universalium

• Kronecker delta — noun a function of two variables i and j that equals 1 when i=j and equals 0 otherwise • Hypernyms: ↑function, ↑mathematical function, ↑single valued function, ↑map, ↑mapping …   Useful english dictionary

• Kronecker — Kronecker: Constante de Kronecker Hugo Kronecker (en) Leopold Kronecker Delta de Kronecker Producto de Kronecker Teorema de Kronecker Teorema de Kronecker Weber …   Wikipedia Español

• Kronecker — ist der Name von Hugo Kronecker (1839–1914), deutscher Physiologe Leopold Kronecker (1823–1891), deutscher Mathematiker Sonstiges Satz von Kronecker Weber Kronecker Delta Kronecker Symbol Kronecker Produkt Kroneckersches Lemma …   Deutsch Wikipedia

• Delta — commonly refers to: Delta (letter), Δ or δ in the Greek alphabet, also used as a mathematical symbol River delta, a landform at the mouth of a river Delta Air Lines, a major U.S. airline Delta may also refer to: Contents 1 Places …   Wikipedia

• Delta (Begriffsklärung) — Delta steht für: Delta (Majuskel Δ, Minuskel δ), der vierte Buchstabe im griechischen Alphabet – dort auch zur Verwendung als Rechengröße den Buchstaben D im ICAO Alphabet subatomare Teilchen, die aus drei anders als beim Proton zusammengesetzten …   Deutsch Wikipedia

• Delta (letter) — Greek alphabet Αα Alpha Νν Nu Ββ Beta …   Wikipedia

• Delta function — may refer to the distribution: Dirac delta function, or the indexed matrix: Kronecker delta …   Wikipedia