- Simplification
-
Rules of inference Propositional calculus Modus ponens (A→B, A ⊢ B)
Modus tollens (A→B, ¬B ⊢ ¬A)
Modus ponendo tollens (¬(A∧B), A ⊢ ¬B)
Conjunction introduction (A, B ⊢ A∧B)
Simplification (A∧B ⊢ A)
Disjunction introduction (A ⊢ A∨B)
Disjunction elimination (A∨B, A→C, B→C ⊢ C)
Disjunctive syllogism (A∨B, ¬A ⊢ B)
Hypothetical syllogism (A→B, B→C ⊢ A→C)
Constructive dilemma (A→P, B→Q, A∨B ⊢ P∨Q)
Destructive dilemma (A→P, B→Q, ¬P∨¬Q ⊢ ¬A∨¬B)
Biconditional introduction (A→B, B→A ⊢ A↔B)
Biconditional elimination (A↔B ⊢ A→B)Predicate calculus Universal generalization
Universal instantiation
Existential generalization
Existential instantiationFor other uses, see Simplification (disambiguation).In mathematical logic, simplification (equivalent to conjunction elimination) is a valid argument and rule of inference which makes the inference that, if the conjunction A and B is true, then A is true, and B is true.
In formal language:
or
The argument has one premise, namely a conjunction, and one often uses simplification in longer arguments to derive one of the conjuncts.
An example in English:
- It's raining and it's pouring.
- Therefore it's raining.
This logic-related article is a stub. You can help Wikipedia by expanding it.