# Modus ponens

Modus ponens

In classical logic, modus ponendo ponens (Latin for "the way that affirms by affirming";[1] often abbreviated to MP or modus ponens) or implication elimination is a valid, simple argument form. It is related to another valid form of argument, modus tollens. Both Modus Ponens and Modus Tollens can be mistakenly used when proving arguments. Both have apparently similar but invalid forms such as affirming the consequent or denying the antecedent and proof by contradiction or proof by contrapositive or evidence of absence.

Modus ponens is a very common rule of inference, and takes the following form:

If P, then Q.
P.
Therefore, Q.[2]

## Formal notation

The modus ponens rule may be written in sequent notation:

$P \to Q, P \vdash Q$

or in rule form:

$\frac{P \rightarrow Q, P}{Q}.$

or as a tautology (plain propositional calculus sentence):

$((P \to Q) \land P) \to Q$

## Explanation

The argument form has two premises. The first premise is the "if–then" or conditional claim, namely that P implies Q. The second premise is that P, the antecedent of the conditional claim, is true. From these two premises it can be logically concluded that Q, the consequent of the conditional claim, must be true as well. In artificial intelligence, modus ponens is often called forward chaining.

An example of an argument that fits the form modus ponens:

If today is Tuesday, then John will go to work.
Today is Tuesday.
Therefore, John will go to work.

This argument is valid, but this has no bearing on whether any of the statements in the argument are true; for modus ponens to be a sound argument, the premises must be true for any true instances of the conclusion. An argument can be valid but nonetheless unsound if one or more premises are false; if an argument is valid and all the premises are true, then the argument is sound. For example, John might be going to work on Wednesday. In this case, the reasoning for John's going to work (because it is Wednesday) is unsound. The argument is not only sound on Tuesdays (when John goes to work), but valid on every day of the week. A propositional argument using modus ponens is said to be deductive.

In single-conclusion sequent calculi, modus ponens is the Cut rule. The cut-elimination theorem for a calculus says that every proof involving Cut can be transformed (generally, by a constructive method) into a proof without Cut, and hence that Cut is admissible.

The Curry-Howard correspondence between proofs and programs relates modus ponens to function application: if f is a function of type P → Q and x is of type P, then f x is of type Q.

## Justification via truth table

The validity of modus ponens in classical two-valued logic can be clearly demonstrated by use of a truth table.

p q p → q
T T T
T F F
F T T
F F T

In instances of modus ponens we assume as premises that p → q is true and p is true. Only one line of the truth table—the first—satisfies these two conditions (p and p → q). On this line, q is also true. Therefore, whenever p → q is true and p is true, q must also be true.

## References

1. ^ Stone, Jon R. (1996). Latin for the Illiterati: Exorcizing the Ghosts of a Dead Language. London, UK: Routledge: 60..
2. ^ Jago, Mark (2007). Formal Logic. Humanities-Ebooks LLP. ISBN 978-1-84760-041-7.

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• Modus Ponens — Le modus ponens, ou détachement, est une figure du raisonnement logique concernant l implication. Elle consiste à affirmer une implication (« si A alors B ») et à poser ensuite l antécédent (« or, A ») pour en déduire le… …   Wikipédia en Français

• modus ponens — [mɔdyspɔnɛ̃s] n. m. ÉTYM. Loc. lat., littéralement « mode qui pose ». ❖ ♦ Log. Règle de déduction selon laquelle, si une proposition A implique une proposition B, on peut déduire, A étant vraie, que B l est également. (On dit aussi règle de… …   Encyclopédie Universelle

• Modus ponens — («правило вывода»): если A и A→B  выводимые формулы, то B также выводима. Форма записи: , где A, B  любые формулы. Правило вывода модус поненс, обычно называемое правилом отделения или гипотетическим силлогизмом, позволяет от… …   Википедия

• Modus Ponens —  ♦ Modus Ponens    Верное заключение, состоящее в переходе от истинности посылки к истинности ее необходимого следствия. Modus ponens принимает форму: если р, то q; однако р, следовательно, q (например: если Сократ человек, то он смертен; однако… …   Философский словарь Спонвиля

• Modus ponens — (Latín: modo que afirma) es una regla de inferencia simple: Si P, entonces Q. P. Entonces, Q. Expresado en la notación de operadores lógicos: donde representa la aserción lógica …   Enciclopedia Universal

• Modus Ponens — Der Modus ponens ist eine schon in der antiken Logik geläufige Schlussfigur, die in vielen logischen Systemen (siehe Logik, Kalkül) als Schlussregel verwendet wird. Der Modus ponens erlaubt es, aus zwei Aussagen der Form Wenn A, dann B und A (den …   Deutsch Wikipedia

• Modus ponens — Le modus ponens, ou détachement, est une figure du raisonnement logique concernant l implication. Elle consiste à affirmer une implication (« si A alors B ») et à poser ensuite l antécédent (« or, A ») pour en déduire le… …   Wikipédia en Français

• Modus ponens — Der Modus ponens ist eine schon in der antiken Logik geläufige Schlussfigur, die in vielen logischen Systemen (siehe Logik, Kalkül) als Schlussregel verwendet wird. Der Modus ponens erlaubt es, aus zwei Aussagen der Form Wenn A, dann B und A (den …   Deutsch Wikipedia

• modus ponens — noun A valid form of argument in which the antecedent of a conditional proposition is affirmed, thereby entailing the affirmation of the consequent. Modus ponens has the form: 1. If P, then Q. See Also: modus tollens …   Wiktionary

• modus ponens — Common shorthand for ‘modus ponendo ponens’, the rule of inference entitling us to pass from p, and p →q, to q …   Philosophy dictionary