- Conjunction introduction
-
Rules of inference Propositional calculus Modus ponens (A→B, A ⊢ B)
Modus tollens (A→B, ¬B ⊢ ¬A)
Modus ponendo tollens (¬(A∧B), A ⊢ ¬B)
Conjunction introduction (A, B ⊢ A∧B)
Simplification (A∧B ⊢ A)
Disjunction introduction (A ⊢ A∨B)
Disjunction elimination (A∨B, A→C, B→C ⊢ C)
Disjunctive syllogism (A∨B, ¬A ⊢ B)
Hypothetical syllogism (A→B, B→C ⊢ A→C)
Constructive dilemma (A→P, B→Q, A∨B ⊢ P∨Q)
Destructive dilemma (A→P, B→Q, ¬P∨¬Q ⊢ ¬A∨¬B)
Biconditional introduction (A→B, B→A ⊢ A↔B)
Biconditional elimination (A↔B ⊢ A→B)Predicate calculus Universal generalization
Universal instantiation
Existential generalization
Existential instantiationConjunction introduction is the inference that, if p is true, and q is true, then the conjunction p and q is true.
For example, if it's true that it's raining, and it's true that I'm inside, then it's true that "it's raining and I'm inside".
Formally:
This logic-related article is a stub. You can help Wikipedia by expanding it.