Quasi-syllogism

Quasi-syllogism

Quasi-syllogism is a term that is sometimes used to describe what might be otherwise called a categorical syllogism but where one of the premises is "singular", and thus not a categorical statement.

"For example:"

#All men are mortal
#Socrates is a man
#Socrates is mortal

In the above argument, while premise 1 is a categorical, premise 2 is a singular statement referring to one individual. While this is a valid logical form, it is not strictly a categorical syllogism.

Of course, it has been suggested that you can "translate" any singular statement into a categorical.

"For example:"

#Socrates is a man
#All members of a class of which the only member is "Socrates" are men

The above two premises may be considered identical, but the first is a singular and the second is a categorical.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Syllogism — A syllogism (Greek: συλλογισμός – syllogismos – conclusion, inference ) is a kind of logical argument in which one proposition (the conclusion) is inferred from two or more others (the premises) of a certain form. In antiquity, there were… …   Wikipedia

  • List of philosophy topics (I-Q) — II and thou I Ching I Ching I proposition I Thou I Thou relationshipIaIamblichus (philosopher)IbYahya Ibn Adi Yahya Ibn Adi Ibn al Arabi Muhyi al Din Ibn al Arabi Abu Bakr Ibn Bajja Abu Bakr Ibn Bājja Abu Bakr Muhammad Ibn Yahya Ibn as Say igh… …   Wikipedia

  • Indian philosophy — Any of the numerous philosophical systems developed on the Indian subcontinent, including both orthodox (astika) systems, namely, the Nyaya, Vaisheshika, Samkhya, Yoga, Mimamsa, and Vedanta schools of philosophy, and unorthodox (nastika) systems …   Universalium

  • Philosophy of mathematics — The philosophy of mathematics is the branch of philosophy that studies the philosophical assumptions, foundations, and implications of mathematics. The aim of the philosophy of mathematics is to provide an account of the nature and methodology of …   Wikipedia

  • Semiotic elements and classes of signs — C. S. Peirce articles  General:    Charles Sanders Peirce Charles Sanders Peirce bibliography Philosophical:    Categories (Peirce) Semiotic elements and   classes of signs (Peirce) Pragmatic maxim • Pragmaticism… …   Wikipedia

  • Chaim Perelman — Chaïm Perelman (May 20, 1912 ndash;January 22, 1984) was a Polish born philosopher of law, who studied, taught, and lived most of his life in Brussels. He was among the most important argumentation theorists of the twentieth century. His chief… …   Wikipedia

  • Chaïm Perelman — (20 May 1912, Warsaw 22 January 1984, Bruxelles) was a Polish born philosopher of law, who studied, taught, and lived most of his life in Brussels. He was among the most important argumentation theorists of the twentieth century. His chief work… …   Wikipedia

  • List of statistics topics — Please add any Wikipedia articles related to statistics that are not already on this list.The Related changes link in the margin of this page (below search) leads to a list of the most recent changes to the articles listed below. To see the most… …   Wikipedia

  • Ockham’s world and future — Arthur Gibson PHILOSOPHICAL BIOGRAPHY Ockham was born in about 1285, certainly before 1290, probably in the village of Ockham, Surrey, near London. If his epitaph is accurate, he died on 10 April 1347. Yet Conrad of Megenberg, when writing to… …   History of philosophy

  • Rhetoric — This article is about the art of rhetoric in general. For the work by Aristotle, see Rhetoric (Aristotle). Painting depicting a lecture in a knight academy, painted by Pieter Isaacsz or Reinhold Timm for Rosenborg Castle as part of a series of… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”