Monstrous moonshine

Monstrous moonshine

In mathematics, monstrous moonshine, or moonshine theory, is a term devised by John Horton Conway and Simon P. Norton in 1979, used to describe the (then totally unexpected) connection between the monster group M and modular functions (particularly, the j function).

Contents

History

Specifically, Conway and Norton, following an initial observation by John McKay, found that the Fourier expansion of j(τ) (sequence A000521 in OEIS), with τ denoting the half-period ratio, could be expressed in terms of linear combinations of the dimensions of the irreducible representations of M (sequence A001379 in OEIS):

j(\tau) = \frac{1}{{q}} + 744 + 196884{q} + 21493760{q}^2 + 864299970{q}^3 + \cdots

where q = eiτ, and


\begin{align}
1 & = 1 \\
196884 & = 196883 + 1 \\
21493760 & = 21296876 + 196883 + 1 \\
864299970 & = 842609326 + 21296876 + 2\cdot 196883 + 2\cdot 1 \\
& {}\,\,\, \vdots
\end{align}

Conway and Norton formulated conjectures concerning the functions jg(q) obtained by replacing the traces on the identity by the traces on other elements g of M. The most striking part of these conjectures is that all these functions are genus zero. In other words, if Gg is the subgroup of SL2(R) which fixes jg(q), then the quotient of the upper half of the complex plane by Gg is a sphere with a finite number of points removed, corresponding to the cusps of Gg.

It turns out that lying behind monstrous moonshine is a certain string theory having the Monster group as symmetries; the conjectures made by Conway and Norton were proven by Richard Ewen Borcherds in 1992 using the no-ghost theorem from string theory and the theory of vertex operator algebras and generalized Kac-Moody superalgebras. Borcherds won the Fields medal for his work, and more connections between M and the j-function were subsequently discovered.

Formal versions of Conway's and Norton's conjectures

The first conjecture made by Conway and Norton was the so-called "moonshine conjecture"; it states that there is an infinite-dimensional graded M-module

V = \bigoplus_{m\geq -1} V_m

with dim(Vm) = cm for all m, where

j(\tau) = \sum_{m\geq -1} c_m {q}^m.

From this it follows that every element g of M acts on each Vm and has character value

\chi_m(g) = \mathrm{tr}(g|_{V_m})

which can be used to construct the McKay–Thompson series of g:

T_g({q}) = \sum_{m\geq -1} \chi_m(g){q}^m.

The second conjecture of Conway and Norton then states that with V as above, for every element g of M, there is a genus zero subgroup K of PSL2(R), commensurable with the modular group Γ = PSL2(Z), such that Tg(q) is the normalized main modular function for K.

The Monster module

It was subsequently shown by A. Oliver L. Atkin, Paul Fong and Stephen D. Smith, using computer calculation, that there is indeed an infinite-dimensional graded representation of the Monster group whose McKay-Thompson series are precisely the Hauptmoduls found by Conway and Norton. Igor Frenkel, James Lepowsky and Arne Meurman explicitly constructed this representation using vertex operators in conformal field theory, describing bosonic string theory compactified on a 24-dimensional torus generated by the Leech lattice, and orbifolded by a reflection. The resulting module is called the Monster module.

Borcherds' proof

Richard Borcherds' proof of the conjecture of Conway and Norton can be broken into five major steps as follows:

  1. A vertex algebra V is constructed that is a graded algebra affording the moonshine representations on M, and it is verified that the monster module has a vertex algebra structure invariant under the action of M. V is thus called the monster vertex algebra.
  2. A Lie algebra \mathcal{M} is constructed from V using the Goddard–Thorn "no-ghost" theorem from string theory; this is a generalized Kac-Moody Lie algebra.
  3. A denominator identity for \mathcal{M} is constructed that is related to the coefficients of j(q).
  4. A number of twisted denominator identities are constructed that are similarly related to the series Tg(q).
  5. The denominator identities are used to determine the numbers cm, using Hecke operators, Lie algebra homology and Adams operations.

Thus, the proof is completed. Borcherds was later quoted as saying "I was over the moon when I proved the moonshine conjecture", and "I sometimes wonder if this is the feeling you get when you take certain drugs. I don't actually know, as I have not tested this theory of mine."

Why "monstrous moonshine"?

The term "monstrous moonshine" was coined by Conway, who, when told by John McKay in the late 1970s that the coefficient of q (namely 196884) was precisely the dimension of the Griess algebra (and thus exactly one more than the degree of the smallest faithful complex representation of the Monster group), replied that this was "moonshine" (in the sense of being a crazy or foolish idea).[1] Thus, the term not only refers to the Monster group M; it also refers to the perceived craziness of the intricate relationship between M and the theory of modular functions.

However, "moonshine" is also a slang word for illegally distilled whiskey, and in fact the name may be explained in this light as well. The Monster group was investigated in the 1970s by mathematicians Jean-Pierre Serre, Andrew Ogg and John G. Thompson; they studied the quotient of the hyperbolic plane by subgroups of SL2(R), particularly, the normalizer Γ0(p)+ of Γ0(p) in SL(2,R). They found that the Riemann surface resulting from taking the quotient of the hyperbolic plane by Γ0(p)+ has genus zero if and only if p is 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59 or 71. When Ogg heard about the Monster group later on, and noticed that these were precisely the prime factors of the size of M, he published a paper offering a bottle of Jack Daniel's whiskey to anyone who could explain this fact.[citation needed]

References

  • John Horton Conway and Simon P. Norton, Monstrous Moonshine, Bull. London Math. Soc. 11, 308–339, 1979.
  • I. B. Frenkel, J. Lepowsky, and A. Meurman, Vertex Operator Algebras and the Monster, Pure and Applied Math., Vol. 134, Academic Press, 1988
  • Richard Ewen Borcherds, Monstrous Moonshine and Monstrous Lie Superalgebras, Invent. Math. 109, 405–444, 1992, online
  • Terry Gannon, Monstrous Moonshine: The first twenty-five years, 2004, online
  • Terry Gannon, Monstrous Moonshine and the Classification of Conformal Field Theories, reprinted in Conformal Field Theory, New Non-Perturbative Methods in String and Field Theory, (2000) Yavuz Nutku, Cihan Saclioglu, Teoman Turgut, eds. Perseus Publishing, Cambridge Mass. ISBN 0-7382-0204-5 (Provides introductory reviews to applications in physics).
  • Gannon, Terry (2006), Moonshine beyond the Monster: The Bridge Connecting Algebra, Modular Forms and Physics, ISBN 0-521-83531-3 
  • Koichiro Harada, Monster, Iwanami Pub. (1999) ISBN 4-000-06055-4, (The first book about the Monster Group written in Japanese).
  • Mark Ronan, Symmetry and the Monster, Oxford University Press, 2006. ISBN 978-0-19-280723-6 (Concise introduction for the lay reader).
  • Marcus Du Sautoy, Finding Moonshine, A Mathematician's Journey Through Symmetry. Fourth Estate, 2008 ISBN 0007214618, ISBN 978-0007214617

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Monstrous moonshine — En mathématiques, monstrous moonshine est un terme anglais conçu par John Horton Conway et Simon P. Norton (en) en 1979, utilisé pour décrire la connexion (alors totalement inattendue) entre le groupe Monstre M et les fonctions modulaires… …   Wikipédia en Français

  • Monstrous moonshine — El término monstrous moonshine describe una inesperada relación descubierta en los años 1970 entre las ramas de teoría de grupos y teoría de números. El término fue creado por J. H. Conway. En inglés, moonshine no se refiere sólo al brillo de la… …   Wikipedia Español

  • Monstrous moonshine — El término monstrous moonshine describe una inesperada relación descubierta en los años 70 entre las ramas de teoría de grupos y teoría de números. El término fue creado por J. H. Conway; en inglés, moonshine no se refiere sólo al brillo de la… …   Enciclopedia Universal

  • Conjecture Monstrous Moonshine — Monstrous moonshine En mathématiques, monstrous moonshine est un terme anglais conçu par John Horton Conway et Simon P. Norton en 1979, utilisé pour décrire la connexion (alors totalement inattendue) entre le groupe Monstre M et les fonctions… …   Wikipédia en Français

  • Monstrous — may refer to: Monstrous carbuncle, a term used to describe modernist architecture which is unsympathetic to its surroundings Monstrous humanoid, a creature type in the Dungeons Dragons fantasy role playing game Monstrous moonshine, a mathematical …   Wikipedia

  • Moonshine (novel) — For other uses, see Moonshine (disambiguation). Moonshine   Author(s) Rob Thurman …   Wikipedia

  • Монстр (группа) — У этого термина существуют и другие значения, см. Монстр (значения). В алгебре, группа Монстр (или монстр Фишера Грейса, или Friendly Giant)  спорадическая простая группа порядка Она была исходно построена Р. Л. Грейсом в… …   Википедия

  • Groupe Monstre —  Pour l’article homonyme, voir Groupe monstre de Tarski (en).  En mathématiques, le Monstre M ou groupe de Fischer Griess F1 est le plus gros des 26 groupes simples …   Wikipédia en Français

  • Monster group — For infinite groups with all nontrivial proper subgroups isomorphic, see Tarski monster group. Group theory …   Wikipedia

  • John H. Conway — John Horton Conway John Horton Conway (* 26. Dezember 1937 in Liverpool) ist ein englischer Mathematiker. Inhaltsverzeichnis 1 Leben und Wirken 2 …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”