Griess algebra

Griess algebra

In mathematics, the Griess algebra is a commutative non-associative algebra on a real vector space of dimension 196884 that has the Monster group "M" as its automorphism group. It is named after mathematician R. L. Griess, who constructed it in 1980 and subsequently used it in 1982 to construct "M". The Monster fixes (vectorwise) a 1-space in this algebra and acts absolutely irreducibly on the 196883-dimensional orthogonal complement of this 1-space.(The Monster preserves the standard inner product on the 196884-space.)

Griess's construction was later simplified by Jacques Tits and John H. Conway.

The Griess algebra is the same as the degree 2 piece of the monster vertex algebra, and the Griess product is one of the vertex algebra products.

References

*R. L. Griess, Jr, "The Friendly Giant", Inventiones Mathematicae 69 (1982), 1-102


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Robert Griess — Robert Louis Griess junior (* 1945 in Savannah, Georgia) ist ein US amerikanischer Mathematiker, der sich mit der Theorie endlicher Gruppen beschäftigt und einer der Entdecker (mit Bernd Fischer) der „Monster“ genannten endlichen einfachen Gruppe …   Deutsch Wikipedia

  • Monster vertex algebra — The monster vertex algebra is a vertex algebra acted on by the monster group that was constructed by Igor Frenkel, James Lepowsky, and Arne Meurman. R. Borcherds used it to prove the monstrous moonshine conjectures, by applying the no ghost… …   Wikipedia

  • R. L. Griess — Robert L. Griess is a mathematician working on finite simple groups. He constructed the monster group using the Griess algebra. Currently, he is a professor of mathematics at University of Michigan. He speaks English, French and German fluently.… …   Wikipedia

  • Monster group — For infinite groups with all nontrivial proper subgroups isomorphic, see Tarski monster group. Group theory …   Wikipedia

  • Groupe Monstre —  Pour l’article homonyme, voir Groupe monstre de Tarski (en).  En mathématiques, le Monstre M ou groupe de Fischer Griess F1 est le plus gros des 26 groupes simples …   Wikipédia en Français

  • List of finite simple groups — In mathematics, the classification of finite simple groups states thatevery finite simple group is cyclic, or alternating, or in one of 16 families of groups of Lie type (including the Tits group, which strictly speaking is not of Lie type),or… …   Wikipedia

  • Leech lattice — In mathematics, the Leech lattice is an even unimodular lattice Λ24 in 24 dimensional Euclidean space E24 found by John Leech (1967). Contents 1 History 2 Characterization 3 Properties …   Wikipedia

  • Monstrous moonshine — En mathématiques, monstrous moonshine est un terme anglais conçu par John Horton Conway et Simon P. Norton (en) en 1979, utilisé pour décrire la connexion (alors totalement inattendue) entre le groupe Monstre M et les fonctions modulaires… …   Wikipédia en Français

  • List of mathematics articles (G) — NOTOC G G₂ G delta space G networks Gδ set G structure G test G127 G2 manifold G2 structure Gabor atom Gabor filter Gabor transform Gabor Wigner transform Gabow s algorithm Gabriel graph Gabriel s Horn Gain graph Gain group Galerkin method… …   Wikipedia

  • List of University of Michigan faculty and staff — The University of Michigan has 6,200 faculty members and roughly 38,000 employees which include National Academy members, and Nobel and Pulitzer Prize winners. Several past presidents have gone on to become presidents of Ivy League… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”