- Antisymmetric tensor
-
In mathematics and theoretical physics, a tensor is antisymmetric on two indices i and j if it flips sign when the two indices are interchanged:
An antisymmetric tensor is a tensor for which there are two indices on which it is antisymmetric. If a tensor changes sign under the exchange of any pair of indices, then the tensor is completely antisymmetric and it is also referred to as a differential form.
A tensor A which is antisymmetric on indices i and j has the property that the contraction with a tensor B, which is symmetric on indices i and j, is identically 0.
For a general tensor U with components and a pair of indices i and j, U has symmetric and antisymmetric parts defined as:
- (symmetric part)
- (antisymmetric part)
Similar definitions can be given for other pairs of indices. As the term "part" suggests, a tensor is the sum of its symmetric part and antisymmetric part for a given pair of indices, as in
An important antisymmetric tensor in physics is the electromagnetic tensor F in electromagnetism.
See also
- antisymmetric matrix
- Exterior algebra
- symmetric tensor
- Levi-Civita symbol
This geometry-related article is a stub. You can help Wikipedia by expanding it.