- Sugar beet
Taxobox
name = Sugar beet
image_width = 270px
image_caption = Two sugar beets - the one on the left has been selectively bred to be smoother than the traditional beet, so that it traps less soil.
regnum =Plant ae
divisio =Magnoliophyta
classis =Magnoliopsida
ordo =Caryophyllales
familia =Amaranthaceae
subfamilia =Chenopodiaceae
genus = "Beta"
species = "B. vulgaris"
binomial = "Beta vulgaris"
binomial_authority = L.Sugar beet ("Beta vulgaris" L.), a member of the "
Chenopodiaceae " family, is a plant whose root contains a high concentration ofsucrose . It is grown commercially forsugar .The sugar beet is directly related to the
beet root,chard and fodder beet, all descended by cultivation from thesea beet .The
European Union , theUnited States , andRussia are the world's three largest sugar beet producers, [ [http://www.fao.org/es/ess/top/commodity.jsp?lang=EN&commodity=157&CommodityList=157&year=2003&yearLyst=2003 Major Food And Agricultural Commodities And Producers - Countries By Commodity ] ] although only the European Union andUkraine are significant exporters of sugar from beet. Beet sugar accounts for 30% of the world's sugar production.In the United States, genetically modified sugar beets resistant to
glyphosate , (marketed byMonsanto asRoundup ) a herbicide, are slated to be planted for the first time in the spring of 2008. Sugar from the biotechnology-enhanced sugarbeet has been approved for human and animal consumption in the European Union. This action by the EU executive body allows unrestricted imports of food and feed products made from (H7-1) glyphosate-tolerant (Roundup Ready) sugarbeets. [ [http://sugarproducer.com/?pageID=10&newsID=1008 Sugar Producer Magazine ] ]Culture
Sugar beet is a hardy
biennial plant that can be grown commercially in a wide variety of temperate climates. During its first growing season, it produces a large (1–2 kg) storage root whose drymass is 15–20%sucrose byweight . If not harvested, during its second growing season, the nutrients in this root are consumed to produce the plant'sflower s andseed s. In commercial beet production, the root is harvested after the first growing season, when the root is at its maximum size.In mosttemperate climates, beets are planted in the spring and harvested in the autumn. At the northern end of its range, growing seasons as short as 100 days can produce commercially viable sugarbeet crops. In warmer climates, such as inCalifornia 's Imperial Valley, sugarbeets are a winter crop, being planted in the autumn and harvested in the spring. In recent years, Syngenta AG has developed the so-called tropical sugar beet. It allows the plant to grow in tropical and subtropical regions. Beets are planted from a small seed; 1 kg of beet seed comprises 100,000 seeds and will plant over ahectare of ground (1 lb will plant about anacre ).Up until the latter half of the 20th century, sugarbeet production was highly labor-intensive, as weed control was managed by densely planting the crop, which then had to be manually thinned with a hoe two or even three times during the growing season. Harvesting also required many workers. Although the roots could be lifted by a plough-like device which could be pulled by a horse team, the rest of the preparation was by hand. One laborer grabbed the beets by their leaves, knocked them together to shake free loose soil, and then laid them in a row, root to one side, greens to the other. A second worker equipped with a beet hook (a short handled tool something between a
billhook and asickle ) followed behind, and would lift the beet and swiftly chop the crown and leaves from the root with a single action. Working this way he would leave a row of beet that could then be forked into the back of a cart.Today, mechanical sowing,
herbicide application for weed control and mechanical harvesting has removed this reliance on workers.chops the leaf and crown (which is high in non-sugar impurities) from the root, lifts the root, and removes excess soil from the root in a single pass over the field. A modern harvester is typically able to cover six rows at the same time. The beet is left in piles at the side of the field and then conveyed into a trailer for delivery to the factory. The conveyor removes more soil -a farmer would be penalized at the factory for excess soil in his load.
If beet is to be left for later delivery, it is formed into clamps. Straw bales are used to shield the beet from the weather. Provided the clamp is well built with the right amount of ventilation, the beet does not significantly deteriorate. Beet that is frozen and then defrosts, produce complex carbohydrates that cause severe production problems in the factory. In the UK, loads may be hand examined at the factory gate before being accepted.
In the US, the fall harvest begins with the first hard frost, which arrests
photosynthesis and the further growth of the root. Depending on the local climate, it may be carried out in few weeks or be prolonged throughout the winter months. The harvest and processing of the beet is referred to as "the campaign", reflecting the organization required to deliver crop at a steady rate to processing factories that run 24 hours a day for the duration of the harvest and processing (for the UK the campaign lasts approx 5 months). In the Netherlands this period is known as "de bietencampagne", a time to be careful when driving local roads in the area the beets are grown. The reason for this is the naturally highclay content of the soil, causing slippery roads when soil falls from the trailers during transport.Sebewaing, Michigan is known as the sugar beet capital of the world. Sebewaing lies inthe Thumb region ofMichigan , both the region and state are major sugar beet producers. Sebewaing is home to one of three other Michigan Sugar Company factories, and is home to the "Michigan Sugar Festival".Processing
Reception
After harvesting, the beets are hauled to the factory. Delivery in the UK is by hauler or, for local farmers, by tractor and trailer. Railways and boats were once used in the UK, but no longer. Some beet was carried by rail in the
Republic of Ireland , until the 2006 shutdown of sugar beet production in the country due to the end of subsidies.Each load entering is weighed and sampled before tipping onto the reception area, typically a "flat pad" of concrete, where it is moved into large heaps. The beet sample is checked for
* soil tare - the amount of non beet delivered
* crown tare - the amount of low sugar beet delivered
* sugar content ("pol") - amount of sucrose in the crop
* nitrogen content - for recommending future fertilizer use to the farmer.From these the actual sugar content of the load is calculated and the grower's payment determined.
The beet is moved from the heaps into a central channel or gulley where it is washed towards the processing plant.
Diffusion
After reception at the processing plant the beet roots are washed, mechanically sliced into thin strips called "cossettes", and passed to a machine called a diffuser to extract their sugar content into a water solution.
Diffusers are long (many metres) vessels in which the beet slices go in one direction while hot water goes in the opposite direction. The movement may either be by a rotating screw or the whole unit rotates and the water and cossettes move through internal chambers. There are three common designs of diffuser, the horizontal rotating 'RT' (from
Raffinerie Tirlemontoise , the manufacturer), inclined screw 'DDS' ("De Danske Sukkerfabrikker"), or vertical screw "Tower". A less common design uses a moving belt of cossettes and water is pumped onto the top of the belt and pours through. In all cases the flow rates of cossettes and water are in the ratio one to two. Typically cossettes take about 90 minutes to pass through the diffuser, the water only 45 minutes. These are allcountercurrent exchange methods that extract more sugar from the cossettes using less water than if they merely sat in a hot water tank. The liquid exiting the diffuser is called "raw juice". The colour of raw juice varies from black to a dark red depending on the amount of oxidation which is itself dependent on diffuser design.The used cossettes, or "pulp", exits the diffuser at about 95% moisture but low sucrose content. Using
screw press es, the wet pulp is then pressed down to 75% moisture. This recovers additional sucrose in the liquid pressed out of the pulp, and reduces the energy needed to dry the pulp. The pressed pulp is dried and sold as animal feed, while the liquid pressed out of the pulp is combined with the raw juice or more often introduced into the diffuser at the appropriate point in the countercurrent process.During diffusion there is a degree of breakdown of the sucrose into invert sugars and these can undergo further breakdown into acids. These breakdown products are not only losses of sucrose but also have knock-on effects reducing the final output of processed sugar from the factory. To limit (thermophilic) bacterial action the feed water may be dosed with
formaldehyde and control of the feed waterpH is also practised. There have been attempts at operating diffusion under alkaline conditions but the process has proven problematic - the improved sucrose extraction in the diffuser offset by processing problems in the next stages.Carbonatation
The raw juice contains many impurities that must be removed before crystallization. This is accomplished via
carbonatation . First, the juice is mixed with hotmilk of lime (a suspension of calcium hydroxide in water). This treatment precipitates a number of impurities, including multivalentanion s such assulfate ,phosphate ,citrate andoxalate , which precipitate as their calcium salts and large organic molecules such asprotein s,saponin s andpectin s, which aggregate in the presence of multivalentcation s. In addition, the alkaline conditions convert the simple sugars,glucose andfructose , along with the amino acidglutamine , to chemically stablecarboxylic acid s. Left untreated, these sugars and amines would eventually frustrate crystallization of the sucrose.Next,
carbon dioxide is bubbled through the alkaline sugar solution, precipitating the lime ascalcium carbonate (chalk ). The chalk particles entrap some impurities and absorb others. A recycling process builds up the size of chalk particles and a naturalflocculation occurs where the heavy particles settle out in tanks (clarifiers). A final addition of more carbon dioxide precipitates more calcium from solution; this is filtered off, leaving a cleaner golden light brown sugar solution called "thin juice".Before entering the next stage the thin juice may receive
soda ash to modify the pH and sulphitation with asulfur -based compound to reduce colour formation due to decomposition of monosaccharides under heat.Evaporation
The thin juice is concentrated via
multiple-effect evaporation to make a "thick juice", roughly 60% sucrose by weight and similar in appearance to pancake syrup. Thick juice can be stored in tanks for later processing, reducing load on the crystallization plant.Crystallization
The thick juice is fed to the crystallizers, recycled sugar is dissolved into it and the resulting syrup is called "mother liquor". This is concentrated further by boiling under vacuum in large vessels and seeded with fine sugar crystals. These crystals grow, as sugar from the mother liquor forms around them. The resulting sugar crystal and syrup mix is called a "massecuite" (from French "cooked mass"). The massecuite is passed to a
centrifuge where the liquid is removed from the sugar crystals. Remaining syrup is rinsed off with water and the crystals dried in a granulator using warm air. The remaining syrup is fed to another crystallizer from which a second batch of sugar is produced. This sugar ("raw") is of lower quality with a lot of colour and impurities and is the main source of the sugar that is re-dissolved into the mother liquor. The syrup from the raw is also sent to a crystalliser. From this a very low quality sugar crystal is produced (known in some systems as "AP sugar") that is also redissolved. The syrup separated ismolasses ; still containing sugar but with too much impurity to be economically processed further.There are variations on the above system, with different recycling and crystallisation paths.
Other uses
Beverages
In a number of countries, most notably the
Czech Republic , sugar from sugar beet is used to make a type of "rum " which is now known as "tuzemak". On the Åland Islands, a similar drink is made under the brand name "Kobba Libre". In some European countries, especially in the Czech Republic andGermany , sugar beet is also used to makerectified spirit andvodka .ugar beet syrup
An unrefined sugary syrup can be produced directly from sugar beet. This thick, dark syrup is produced by cooking shredded sugar beet for several hours, then pressing the resulting sugar beet mash and concentrating the juice produced until it has the consistency similar to that of
honey . No other ingredients are used. InGermany , particularly theRhineland area, this sugar beet syrup (called "Zuckerrüben-Sirup" in German) is used as a spread for sandwiches, as well as for sweetening sauces, cakes and desserts.Commercially, if the syrup has a Dextrose Equivalency above 30 DE, the product has to be hydrolyzed and converted to a high-fructose syrup, much like
high-fructose corn syrup , or iso-glucose syrup in the EU.Betaine
Betaine can be isolated from the by-products of sugar beet processing. Production is chiefly bychromatagraphic separation using techniques such as the "simulated moving bed".Uridine
Uridine can be isolated from sugar beet. Uridine in combination withomega 3 fatty acid s has been shown to alleviate depression. [ [http://onhealth.webmd.com/script/main/art.asp?articlekey=55995 Compounds from fatty fish, sugar beets, beet molasses may help fight depression ] ]Alternative fuel
There are plans by
BP andAssociated British Foods to use agricultural surpluses of sugar beet to producebiobutanol inEast Anglia in theUnited Kingdom .History
Although beets have been grown as vegetables and for fodder since antiquity (a large root vegetable appearing in 4000-year old Egyptian temple artwork may be a beet), their use as a sugar crop is relatively recent. As early as 1590, the French botanist
Olivier de Serres extracted a sweet syrup from beetroot, but the practice did not become common. The Prussian chemistAndreas Sigismund Marggraf used alcohol to extract sugar from beets (and carrots) in 1747, but his methods did not lend themselves to economical industrial-scale production. His former pupil and successorFranz Karl Achard began selectively breeding sugar beet from the "White Silesian" fodder beet in 1784. By the beginning of the 19th century, his beet was approximately 5–6 percent sucrose by weight, compared to around 20 percent in modern varieties. Under the patronage ofFrederick William III of Prussia , he opened the world's first beet sugarfactory in 1801, atCunern inSilesia .The development of the European beet sugar industry was encouraged by the
Napoleonic Wars . In 1807 the British began ablockade ofFrance , preventing the import ofsugarcane from theCaribbean . Partly in response, in 1812, FrenchmanBenjamin Delessert came up with a sugar extraction process suitable for industrial application, and in 1813, Napoleon instituted a retaliatoryembargo . By the end of the wars, over 300 sugar beet mills operated in France andcentral Europe .The first U.S. sugar beet mill opened in 1838, but the first commercially successful mill was established by
E. H. Dyer in 1879.Agriculture
Sugar beet is an important part of a rotating crop cycle.
Sugar beet plants are susceptible to rhizomania ("root madness") which turns the bulbous tap root into many small roots making the crop economically unprocessable. Strict controls are enforced in European countries to prevent the spread, but it is already endemic in some areas. Continual research looks for varieties with resistance as well as increased sugar yield. Sugar beet breeding research in the United States is most prominently conducted at various USDA Agricultural Research Stations, including one in
Fort Collins, Colorado , headed by Linda Hanson and Leonard Panella, one inFargo, North Dakota , headed by John Wieland, and one atMichigan State University inEast Lansing, Michigan , headed by J. Mitchell McGrath.Other economically important members of the
Chenopodioideae subfamily:
*Beetroot
*Chard
*Mangelwurzel or Fodder Beetee also
*
Sugar cane References
External links
* [http://www.crystalsugar.com/products/products6.sprocess.asp Sugar Process at the American Crystal Sugar Company website]
* [http://www.sucrose.com/lbeet.html How Beet Sugar is Made]
* [http://www.crystalgrowing.com/recipes/sugar/sugar.htm Growing Sugar Crystals]
* [http://www.csm.nl CSM sugar]
* [http://www.guardian.co.uk/climatechange/story/0,,1802296,00.html "Guardian (UK)" article on how sugar beet can be used for fuel]
* [http://digital.library.unt.edu/permalink/meta-dc-1503:1 "Sugar beet culture in the northern Great Plains area"] hosted by the [http://digital.library.unt.edu/browse/department/govdocs/ University of North Texas Government Documents Department]
Wikimedia Foundation. 2010.