Weak localization

Weak localization

Weak localization is a physical effect, which occurs in disordered electronic systems at very low temperatures. The effect manifests itself as a positive correction to the resistivity of a metal or semiconductor.

The effect is quantum-mechanical in nature and has the following origin: In a disordered electronic system, the electron motion is diffusive rather than ballistic. That is, an electron does not move along a straight line, but experiences a series of random scatterings off impurities which results in a random "walk".

The resistivity of the system is related to the probability of an electron to propagate between two given points in space. Classical physics assumes that the total probability is just the sum of the probabilities of the paths connecting the two points. However quantum mechanics tells us that to find the total probability we have to sum up the quantum-mechanical amplitudes of the paths rather than the probabilities themselves. Therefore, the correct (quantum-mechanical) formula for the probability for an electron to move from a point A to a point B includes the classical part (individual probabilities of diffusive paths) and a number of interference terms (products of the amplitudes corresponding to different paths). The usual formula for the conductivity of a metal (the so-called Drude formula) corresponds to the former classical terms, while the weak localization correction corresponds to the latter quantum interference terms averaged over disorder realizations.

The weak localization correction can be shown to come mostly from quantum interference between self-crossing paths in which an electron can propagate in the clock-wise and counter-clockwise direction around a loop. Due to the identical length of the two paths along a loop, the quantum phases cancel each other exactly and these (otherwise random in sign) quantum interference terms survive disorder averaging. Since it is much more likely to find a self-crossing trajectory in low dimensions, the weak localization effect manifests itself much stronger in low-dimensional systems (films and wires).

ee also

*Anderson localization


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Anderson localization — In condensed matter physics, Anderson localization, also known as strong localization, is the absence of diffusion of waves in a disordered medium. This phenomenon is named after the American physicist P. W. Anderson, who was the first one to… …   Wikipedia

  • Coherent backscattering — In physics, coherent backscattering is observed when coherent radiation (such as a laser beam) propagates through a medium which has a large number of scattering centers (such as milk or a thick cloud) of size comparable to the wavelength of the… …   Wikipedia

  • Backscatter — For other uses, see Backscatter (disambiguation). In physics, backscatter (or backscattering) is the reflection of waves, particles, or signals back to the direction they came from. It is a diffuse reflection due to scattering, as opposed to… …   Wikipedia

  • Scattering — is a general physical process where some forms of radiation, such as light, sound, or moving particles, are forced to deviate from a straight trajectory by one or more localized non uniformities in the medium through which they pass. In… …   Wikipedia

  • Diffuson — Not to be confused with diffusion. The diffuson is a mathematical object, which often appears in the theory of disordered electronic systems (a part of condensed matter physics). In a disordered system, the motion of an electron is not ballistic …   Wikipedia

  • Universal Conductance Fluctuations — Universal Conductance Fluctuation (UCF) in quantum physics is a phenomenon encountered in electrical transport experiments in mesoscopic species. The measured electrical conductance will vary from sample to sample, mainly due to inhomogeneous… …   Wikipedia

  • Schwache Lokalisierung — Die schwache Lokalisierung (weak localization) bezeichnet einen Quanteneffekt in der Leitfähigkeit des elektrischen Stroms[1] und allgemein in der Streuung von Wellen in ungeordneten Medien, der dazu führt, dass die Ausbreitung der Wellen… …   Deutsch Wikipedia

  • nervous system disease — Introduction       any of the diseases or disorders that affect the functioning of the human nervous system (nervous system, human). Everything that humans sense, consider, and effect and all the unlearned reflexes of the body depend on the… …   Universalium

  • Bi-directional text — is text containing text in both text directionalities, both right to left (RTL) and left to right (LTR). It generally involves text containing different types of alphabets, but may also refer to boustrophedon, which is changing text… …   Wikipedia

  • Distribution (mathematics) — This article is about generalized functions in mathematical analysis. For the probability meaning, see Probability distribution. For other uses, see Distribution (disambiguation). In mathematical analysis, distributions (or generalized functions) …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”