- Nuclear fuel response to reactor accidents
This page is devoted to a discussion of how
uranium dioxide nuclear fuel behaves during both normalnuclear reactor operation and under reactor accident conditions such as overheating. Work in this area is often very expensive to conduct, and so has often been performed on a collaborative basis between groups of countries, usually under the aegis of theCSNI .Swelling
Cladding
It is important to note that both the fuel can swell and the cladding which covers the fuel to form a fuel pin can be deformed. It is normal to fill the gap between the fuel and the cladding with
helium gas to permit better thermal contact between the fuel and the cladding. During use the amount of gas inside the fuel pin can increase because of the formation ofnoble gas es (krypton andxenon ) by the fission process. If aLoss of coolant accident (LOCA) (e.g. Three Mile Island) or a Reactivity Initiated Accident (RIA) (e.g. Chernobyl orSL-1 ) occurs then the temperature of this gas can increase. As the fuel pin is sealed thepressure of the gas will increase (PV = nRT) and it is possible to deform and burst the cladding. It has been noticed that bothcorrosion and irradiation can alter the properties of thezirconium alloy commonly used as cladding, making itbrittle . As a result the experiments using unirradated zirconium alloy tubes can be misleading.According to one paper [T. Nakamura, T. Fuketa, T. Sugiyama and H. Sasajima, "Journal of Nuclear Science and Technology", 2004, 41, 37.] [http://www.jstage.jst.go.jp/article/jnst/41/1/37/_pdf] the following difference between the cladding failure mode of unused and used fuel was seen.
Unirradated fuel rods were pressurized before being placed in a special reactor at the Japanese
Nuclear Safety Reasearch Reactor (NSRR) where they were subjected to a simulated RIA transient. These rods failed after ballooning late in the transient when the cladding temperature was high. The failure of the cladding in these tests wasductile , and it was a burst opening.The used fuel (61 GW days / ton of Uranium) failed early in the transient with a brittle fracture which was a longitudinal crack.
If has been found that hydrided zirconium tube is weaker and the bursting pressure is lower. [F. Nagase and T. Fuketa, "Journal of Nuclear Science and Technology", 2005, 42, 58-65]
The common failure process of fuel in the water cooled reactors is a transition to film boiling and subsequent ignition of zirconium cladding in the steam. The effects of the intense hot Hydrogen reaction product flow on the fuel pellets and on the bundle's wall well represented on the sidebar picture.
Fuel
The fuel can swell during use, this is because of effects such as bubble formation in the fuel and the damage which occurs to the lattice of the solid. The swelling of the fuel can impose mechanical stresses upon the cladding which covers the fuel. A document on the subject of the swelling of the fuel can be downloaded from the
NASA web site. [http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19700006935_1970006935.pdf] .Fission gas release
As the fuel is degraded or heated the more volatile fission products which are trapped within the
uranium dioxide may become free. For example see [J.Y. Colle, J.P. Hiernaut, D. Papaioannou, C. Ronchi, A. Sasahara, "Journal of Nuclear Materials", 2006, 348, 229.]A report on the release of 85Kr, 106Ru and 137Cs from uranium when air is present has been written. It was found that uranium dioxide was converted to U3O8 between about 300 and 500 °C in air. They report that this process requires some time to start, after the induction time the sample gains mass. The authors report that a layer of U3O7 was present on the uranium dioxide surface during this induction time. They report that 3 to 8% of the
krypton -85 was released, and that much less of theruthenium (0.5%) andcaesium (2.6 x 10-3%) occurred during the oxidation of the uranium dioxide. [P. Wood and G.H. Bannister, CEGB report [http://www.iaea.org/inis/aws/htgr/fulltext/iwggcr13_11.pdf] ]Heat transfer between the cladding and the water
In a water cooled power reactor (or in a water filled used fuel store
cooling pond ), if a power surge occurs as a result of areactivity initiated accident , an understanding of the transfer of heat from the surface of the cladding to the water is very useful. In a French study, metal pipe immersed in water (both under typicalPWR and pond conditions), was electrically heated to simulate the generation of heat within a fuel pin by nuclear processes. Thetemperature of the pipe was monitored bythermocouple s and for the tests conducted under PWR conditions the water entering the larger pipe (14.2 mm diameter) holding the test metal pipe (9.5 mm outside diameter and 600 mm long) was at 280 oC and 15 MPa. The water was flowing past the inner pipe at "circa" 4 ms-1 and the cladding was subjected to heating at 2200 to 4900 oC s-1 to simulate an RIA. It was found that as the temperature of the cladding increased the rate of heat transfer from the surface of the cladding increased at first as the water boiled atnucleation sites. When the heat flux is greater than thecritical heat flux a boiling crisis occurs. This occurs as the temperature of the fuel cladding surface increases so that the surface of the metal was too hot (surface dries out) for nucleation boiling. When the surface dries out the rate of heat transfer decreases, after a further increase in the temperature of the metal surface the boiling resumes but it is nowfilm boiling . [V. Bessiron, "Journal of Nuclear Science and Technology", 2007, 44, 211-221.]Corrosion and other changes to materials in the reactor
Corrosion on the inside of the cladding
Zirconium alloys can undergostress corrosion cracking when exposed to iodine, [Gladkov, V.P. ; Petrov, V.I. ; Svetlov, A.V. ; Smirnov, E.A. ; Tenishev, V.I. ; Bibilashvili, Yu. K. ; Novikov, V.V, "Atomic Energy", 1994, 75, 97-103] theiodine is formed as afission product which depending on the nature of the fuel can escape from the pellet. [http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=4681711] It has been shown that iodine causes the rate of cracking in preasurisedzircaloy -4 tubing to increase. [S.Y. Park, J.H. Kim, M.H. Lee and Y.H. Jeong, "Journal of Nuclear Materials", 2007, "in press" (doi:10.1016/j.jnucmat.2007.03.258)]Graphite moderated reactors
In the cases of
carbon dioxide cooledgraphite moderated reactors such asmagnox and AGR power reactors an importantcorrosion reaction is the reaction of amolecule of carbon dioxide with graphite (carbon ) to form two molecules ofcarbon monoxide . This is one of the processes which limits the working life of this type of reactor.Water cooled reactors
Corrosion
In a water cooled reactor the action of
radiation on the water formshydrogen peroxide andoxygen . These can causestress corrosion cracking of metal parts which includefuel cladding and other pipework. To mitigate thishydrazine andhydrogen are injected into aBWR or PWR primary cooling circuit to adjust the redox properties of the system. A review of recent developments on this topic has been published [K. Ishida, Y. Wada, M. Tachibana, M. Aizawa, M. Fuse and E. Kadoi, "Journal of Nuclear Science and Technology", 2006, 43, 65-76. [http://www.jstage.jst.go.jp/article/jnst/43/1/65/_pdf] ]Thermal stresses upon quenching
In a loss of coolant accident (
LOCA ) it is thought that the surface of the cladding could reach a temperature between 800 and 1400 K, and the cladding will be exposed tosteam for some time before water is reintroduced into the reactor to cool the fuel. During this time when the hot cladding is exposed to steam some oxidation of thezirconium will occur to form a zirconium oxide which is more zirconium rich thanzirconia . This Zr(O) phase is the α-phase, further oxidation forms zirconia. The longer the cladding is exposed to steam the less ductile it will be. One measure of the ductility is to compress a ring along a diameter (at a constant rate of displacement, in this case 2 mm min-1) until the first crack occurs, then the ring will start to fail. The elongation which occurs between when the maximium force is applied and when the mechanical load is declined to 80% of the load required to induce the first crack is the L0.8 value in mm. The more ductile a sample is the greater this L0.8 value will be.In one experiment the zirconium is heated in steam to 1473 K, the sample is slowly cooled in steam to 1173 K before being quenched in water. As the heating time at 1473 K is increased the zirconium becomes more brittle and the L0.8 value declines. [Y. Udagawa, F. Nagase and T. Fuketa, "Journal of Nuclear Science and Technology", 2006, 43, 844]
Aging of steels
Irradiation causes the properties of steels to become poorer, for instance SS316 becomes less
ductile and lesstough . Alsocreep and stress corrosion cracking become worse. Papers on this effect continue to be published [K. Fukuya, K. Fujii, H. Nishioka and Y. Kitsunai, "Journal of Nuclear Science and Technology", 2006, 43, 159-173. [http://www.jstage.jst.go.jp/article/jnst/43/2/159/_pdf] ]Cracking and overheating of the fuel
This is due to the fact that as the fuel expands on heating, the core of the pellet expands more than the rim. Because of the thermal stress thus formed the fuel cracks, the cracks tend to go from the centre to the edge in a star shaped pattern. A
PhD thesis on the subject has been published [http://www.nada.kth.se/utbildning/grukth/exjobb/rapportlistor/2004/rapporter04/othman_rozhgar_04051.pdf] by a student at theRoyal Institute of Technology inStockholm (Sweden ).The cracking of the fuel has an effect on the release of radioactivity from fuel both under accident conditions and also when the spent fuel is used as the final disposal form. The cracking increases the surface area of the fuel which increases the rate at which fission products can leave the fuel.
The temperature of the fuel varies as a function of the distance from the centre to the rim. At distance x from the centre the temperature (Tx) is described by the
equation where ρ is the power desnity (W m-3) and Kf is thethermal conductivity .Tx = TRim + ρ (rpellet² - x²) (4 Kf)-1
To explain this a for a series of fuel pellets being used with a rim temperature of 200 °C (typical for a
BWR ) with differentdiameters and power densities of 250 Wm-3 have been modeled using the above equation. Note that these fuel pellets are rather large; it is normal to use oxide pellets which are about 10 mm in diameter.To show the effects of different power densitys on the centreline temperatures two graphs for 20 mm pellets at different power levels are shown below. It is clear that for all pellets (and most true of uranium dioxide) that for a given sized pellet that a limit must be set on the power density. It is likely that the maths used for these calculations would be used to explain how electrical fuses function and also it could be used to predict the centreline temperature in any system where heat is released throughout a cylinder shaped object.Radiochemistry and Nuclear Chemistry, G. Choppin, J-O Liljenzin and J. Rydberg, 3rd Ed, 2002, Butterworth-Heinemann, ISBN 0-7506-7463-6]
Loss of volatile fission products from pellets
It is important to note that the heating of pellets can result in some of the fission products being lost from the core of the pellet. If the xenon can rapidly leave the pellet then the amount of 134Cs and 137Cs which is present in the gap between the cladding and the fuel will increase. As a result if the zirconium tubes holding the pellet are broken then a greater release of radioactive caesium from the fuel will occur. It is important to understand that the 134Cs and 137Cs are formed in different ways, and hence as a result the two caesium isotopes can be found at different pats of a fuel pin.
It is clear that the volatile iodine and xenon isotopes have minutes in which they can diffuse out of the pellet and into the gap between the fuel and the cladding. Here the xenon can decay to the long lived caesium isotope.
Genesis of 137Cs
The Chernobyl release
The release of radioactivity from the used fuel is greatly controlled by the volatility of the elements. At Chernobyl much of the
xenon andiodine was released while much less of thezirconium was released. The fact that only the more volatile fission products are released with ease will greatly retard the release of radioactivity in the event of an accident which causes serious damage to the core. Using two sources of data it is possible to see that the elements which were in the form of gases, volatile compounds or semi-volatile compounds (such as CsI) were released at Chernobyl while the less volatile elements which form solid solutions with the fuel remained inside the reactor fuel.According to the
OECD NEA report on Chernobyl (ten years on) [http://www.nea.fr/html/rp/chernobyl/allchernobyl.html] , the following proportions of the core inventory were released. The physical andchemical forms of the release includedgases ,aerosols and finely fragmented solid fuel. According to some research the ruthenium is very mobile when the nuclear fuel is heated with air. [http://web.nmsu.edu/~prokop/pub/ru.pdf]Some work has been done on TRISO fuel under similar conditions. [http://www.iaea.org/inis/aws/htgr/abstracts/abst_iwggcr8_22.html]
Table of chemical data
The releases of fission products and uranium from uranium dioxide (from spent
BWR fuel, burn-up was 65 GWd t-1) which was heated in a Knudsen cell has been repeated. [J.Y. Colle, J.-P. Hiernaut, D. Papaioannou, C. Ronchi and A. Sasahara, "Journal of Nuclear Materials", 2006, 348, 229-242] Fuel was heated in the Knudsen cell both with and without preoxidation inoxygen at "c" 650 K. It was found even for the noble gases that a high temperature was required to liberate them from the uranium oxide solid. For unoxidized fuel 2300 K was required to release 10% of the uranium while oxidized fuel only requires 1700 K to release 10% of the uranium.According to the report on Chernobyl used in the above table 3.5% of the following isotopes in the core were released 239Np, 238Pu, 239Pu, 240Pu, 241Pu and 242Cm.
Degradation of the whole fuel element
It is important to note that water and
zirconium can react violently at 1200 °C, at the same temperature the zirconium cladding can react with uranium dioxide to form zirconium oxide and a uranium/zirconiumalloy melt. [http://www.thermo.ucdavis.edu/people/sergey/1.pdf]PHEBUS
In France a facility exists in which a fuel melting incident can be made to happen under strictly controlled conditions. [http://www.irsn.org/va/09_int/09_int_3_lib/pdf/Ra_sc_tech/008_015.pdf] [http://www.irsn.org/va/04_act/04_act_1/04_act_communiques_irsn/04_act_communiques_irsn_2003/04_act_030625.shtm] In the PHEBUS research program fuels have been allowed to heat up to temperatures in excess of the normal operating temperatures, the fuel in question is in a special channel which is in a toroidal nuclear reactor. The nuclear reactor is used as a "driver core" to irradate the test fuel. While the reactor is cooled as normal by its own cooling system the test fuel has its own cooling system, which is fitted with filters and equipment to study the release of radioactivity from the damaged fuel. Already the release of radioisotopes from fuel under different conditions has been studied. After the fuel has been used in the experiment it is subject to a detailed examination (PIE), In the 2004 annual report from the
ITU some results of the PIE on PHEBUS (FPT2) fuel are reported in section 3.6. [http://itu.jrc.ec.europa.eu/uploads/media/Activity_Report_2004.pdf] [http://itu.jrc.ec.europa.eu/index.php?id=217&type=10#370]LOFT
The Loss of Fluid Tests (LOFT) were an early attempt to scope the response of real nuclear fuel to conditions under a Loss of Coolant Accident, funded by
USNRC . The facility was built atIdaho National Laboratory , and was essentially a scale-model of a commercial PWR. ('Power/volume scaling' was used between the LOFT model, with a 50MWth core, and a commercial plant of 3000MWth).The original intention (1963-1975) was to study only one or two major (large break) LOCA, since these had been the main concern of US 'rule-making' hearings in the late 1960s and early 1970s. These rules had focussed around a rather stylised large-break accident, and a set of criteria (eg for extent of fuel-clad oxidation) set out in 'Appendix K' of 10CFR50 (Code of Federal Regulations). However, following the accident at
Three Mile Island , detailed modelling of much smaller LOCA became of equal concern.38 LOFT tests were eventually performed and their scope was broadened to study a wide spectrum of breach sizes. These tests were used to help validate a series of computer codes (such as RELAP-4, RELAP-5 and TRAC) then being developed to calculate the thermal-hydraulics of LOCA.
:Some details of the tests can be read on-line.
:: [http://www.inl.gov/threemileisland/docs/1979-december-loss-of-fluid-pipe-break-test.pdf]
:: [http://www.inl.gov/threemileisland/docs/1979-june-loss-of-fluid-test-successful.pdf]
:: [http://www.inl.gov/threemileisland/docs/1980-february-second-loss-of-fluid-small-break-test-conducted.pdf]
:: [http://www.inl.gov/threemileisland/docs/1980-july-loss-of-fluid-test-successfully-completed-organizations-compile-tmi-data.pdf]
:: [http://www.inl.gov/threemileisland/docs/1980-june-loft-conducts-tmi-type-test.pdf]
:: [http://www.inl.gov/threemileisland/docs/1982-january-semiscale-tests-reactor-coolant-level-measurement-system.pdf]
:: [http://www.inl.gov/threemileisland/docs/1983-april-pbf-fuel-damage-test-slated.pdf]
:: [http://www.inl.gov/threemileisland/docs/1983-september-severe-fuel-damage-test-successful.pdf]
:: [http://www.inl.gov/threemileisland/docs/1984-january-recap-large-break-loss-of-coolant-accident.pdf]
:: [http://www.inl.gov/threemileisland/docs/1985-january-1984-recap-including-loss-of-fluid-tests.pdf]
See also
*
NUREG-1150
*Nuclear power Contact of molten fuel with water and concrete
Water
Extensive work was done from 1970 to 1990 on the possibility of a
steam explosion or FCI when molten 'corium' contacted water. Many experiments suggested quite low conversion of thermal to mechanical energy, whereas the theoretical models available appeared to suggest that much higher efficiencies were possible. A NEA/OECD report was written on the subject in 2000 which states that a steam explosion caused by contact of corium with water has four stages. [http://www.nea.fr/html/nsd/docs/1999/csni-r99-24.pdf]* Premixing
As the jet of corium enters the water, it breaks up into droplets. During this stage the thermal contact between the corium and the water is not good because a vapour film surrounds the droplets of corium and this insulates the two from each other. It is possible for this "meta"-stable state to quench without an explosion or it can trigger in the next step
* Triggering
A externally or internally generated trigger (such as a pressure wave) causes a collapse of the vapour film between the corium and the water.
* Propagation
The local increase in pressure due to the increased heating of the water can generate enhanced heat transfer (usually due to rapid fragmentation of the hot fluid within the colder more volatile one) and a greater pressure wave, this process can be self-sustained. (The mechanics of this stage would then be similar to those in a classical ZND
detonation wave ).* Expansion
This process leads to the whole of the water being suddenly heated to boiling. This causes an increase in pressure which can result in damage to the plant.
Recent work
Some work has been done in Japan where
uranium dioxide andzirconium dioxide was melted in acrucible before being added to water. The fragmentation of the fuel which results is reported in the paper [http://www.jstage.jst.go.jp/article/jnst/40/10/783/_pdf] which is in "Journal of Nuclear Science and Technology [http://www.jstage.jst.go.jp/browse/jnst/_vols] "Concrete
A review of the subject can be read at [http://www.nea.fr/html/nsd/docs/1987/csni87-143.pdf] and work on the subject continues to this day; in
Germany at theFZK some work has been done on the effect of thermite on concrete, this is a simulation of the effect of the moltern core of a reactor breaking through the bottom of the pressure vessel into the containment. [http://www.ubka.uni-karlsruhe.de/vvv/fzk/6453/6453.text] [http://bibliothek.fzk.de/zb/berichte/FZKA6453.pdf] [http://bibliothek.fzk.de/zb/berichte/FZKA7002.pdf]Lava flows from coriumIt is possible to see in the photo shown below that the corium (molten core) will cool and change to a solid with time. It is thought that the solid is weathering with time. The solid can be described as "Fuel Containing Mass", it is a mixture of sand, zirconium and uranium dixoide which had been heated at a very high temperature [http://ph.icmp.lviv.ua/chornobyl/e-library/tarapon-modeli_procesiv/Summary.htm] until it has melted. The chemical nature of this "FCM" has been the subject of some research. [http://www.maik.rssi.ru/abstract/radchem/1/radchem0596_abstract.pdf] The amount of fuel left in this form within the plant has been considered [http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=226794] . A
silicone polymer has been used to fix the contamination.The Chernobyl melt was a
silicate melt which did contain inclusions of Zr/U phases, moltensteel and high uraniumzircon . The lava flow consists of more than one type of material -- a brown lava and a porous ceramic material have been found.The uranium to zirconium for different parts of the solid differs a lot, in the brown lava a uranium rich phase with a U:Zr ratio of 19:3 to about 38:10 is found. The uranium poor phase in the brown lava has a U:Zr ratio of about 1:10. [S.V. Ushakov, B.E. Burakov, S.I. Shabalev and E.B. Anderson, "Mater. Res. Soc. Symp. Proc.", 1997, 465, 1313-1318. [http://www.thermo.ucdavis.edu/people/sergey/1.pdf] ] It is possible from the examination of the Zr/U phases to know the thermal history of the mixture, it can be shown that before the explosion that in part of the core the temperature was higher than 2000 °C. While in some areas the temperature was over 2400-2600 °C.pent fuel corrosion
Uranium dioxide films
Uranium dioxide films can be deposited by reactive
sputtering using anargon andoxygen mixture at a lowpressure . This has been used to make a layer of the uranium oxide on agold surface which was then studied withAC impedance spectrscopy. [F. Miserque, T. Gouder, D.H. Wegen and P.D.W. Bottomley, "Journal of Nuclear Materials", 2001, 298, 280-290.]Noble metal nanoparticles and
hydrogen According to the work of the
corrosion electrochemist Shoesmith [http://www.uwo.ca/chem/people/faculty/shoesmith.htm] [http://publish.uwo.ca/~ecsweb/] thenanoparticle s of Mo-Tc-Ru-Pd have a strong effect on the corrosion of uranium dioxide fuel. For instance his work suggests that when the hydrogen (H2) concentration is high (due to the anaerobic corrosion of thesteel waste can) the oxidation of hydrogen at the nanoparticles will exert a protective effect on the uranium dioxide. This effect can be thought of as an example of protection by asacrificial anode where instead of a metalanode reacting and dissolving it is the hydrogen gas which is consumed.References
Wikimedia Foundation. 2010.