Duhamel's integral

Duhamel's integral

In theory of vibrations, Duhamel's integral is a way of calculating the response of linear systems and structures to arbitrary time-varying external excitations.

Contents

Introduction

Background

The response of a linear, viscously damped single-degree of freedom (SDOF) system to a time-varying mechanical excitation p(t) is given by the following second-order ordinary differential equation

m\frac{{d^2 x(t)}}{{dt^2 }} + c\frac{{dx(t)}}{{dt}} + kx(t) = p(t)

where m is the (equivalent) mass, x stands for the amplitude of vibration, t for time, c for the viscous damping coefficient, and k for the stiffness of the system or structure.

If a system is initially rest at its equilibrium position, from where it is acted upon by a unit-impulse at the instance t=0, i.e., p(t) in the equation above is a delta function δ(t), x(0) = \left. {\frac{{dx}}{{dt}}} \right|_{t = 0} = 0, then by solving the differential equation one can get a fundamental solution (known as a unit-impulse response function)

h(t)=\begin{cases} \frac{1}{{m\omega _d }}e^{ - \varsigma \omega _n t} \sin \omega _d t, & t > 0 \\ 0, & t < 0 \end{cases}

where \varsigma  = \frac{c}{{2m\omega _n }} is called the damping ratio of the system, ωn is the natural angular frequency of the undamped system (when c=0) and \omega _d  = \omega _n \sqrt {1 - \varsigma ^2 } is the circular frequency when damping effect is taken into account (when c \ne 0). If the impulse happens at t=τ instead of t=0, i.e. p(t) = δ(t − τ), the impulse response is

h(t - \tau ) = \frac{1}{{m\omega _d }}e^{ - \varsigma \omega _n (t - \tau )} \sin [\omega _d (t - \tau )]t \ge \tau

Conclusion

Regarding the arbitrarily varying excitation p(t) as a superposition of a series of impulses:

p(t) \approx \sum {p(\tau ) \cdot \Delta \tau  \cdot \delta } (t - \tau )

then it is known from the linearity of system that the overall response can also be broken down into the superposition of a series of impulse-responses:

x(t) \approx \sum {p(\tau ) \cdot \Delta \tau  \cdot h} (t - \tau )

Letting \Delta \tau  \to 0, and replacing the summation by integration, the above equation is strictly valid

x(t) = \int_0^t {p(\tau )h(t - \tau )d\tau }

Substituting the expression of h(t-τ) into the above equation leads to the general expression of Duhamel's integral

x(t) = \frac{1}{{m\omega _d }}\int_0^t {p(\tau )e^{ - \varsigma \omega _n (t - \tau )} \sin [\omega _d (t - \tau )]d\tau }

Mathematical Proof

The above SDOF dynamic equilibrium equation in the case p(t)=0 is the homogeneous equation:

\frac{{d^2 x(t)}}{{dt^2 }} + \bar{c}\frac{{dx(t)}}{{dt}} + \bar{k}x(t) = 0, where \bar{c}=\frac{c}{m},\bar{k}=\frac{k}{m}

The solution of this equation is:

x_h(t) = C_1.e^{ -\frac{1}{2}.(\bar{c}+\sqrt{\bar{c}^2-4.\bar{k}}).t}+C_2.e^{ \frac{1}{2}.(-\bar{c}+\sqrt{\bar{c}^2-4.\bar{k}}).t}

The substitution: A = \frac{1}{2}.(\bar{c}-\sqrt{\bar{c}^2-4.\bar{k}}), \; B=\frac{1}{2}.(\bar{c}+\sqrt{\bar{c}^2-4.\bar{k}}), \; P=\sqrt{\bar{c}^2-4.\bar{k}}, \; P=B-A leads to:

x_h(t) = C_1.e^{ -B.t} \; + \; C_2.e^{ -A.t}

One partial solution of the non-homogeneous equation:  \frac{{d^2 x(t)}}{{dt^2 }} + \bar{c}\frac{{dx(t)}}{{dt}} + \bar{k}x(t) = \bar{p(t)}, where \bar{p(t)}=\frac{p(t)}{m}, could be obtained by the Lagrangian method for deriving partial solution of non-homogeneous ordinary differential equations.

This solution has the form:

x_p(t) = \frac{\int{\bar{p(t)}.e^{At}dt}.e^{-At}-\int{\bar{p(t)}.e^{Bt}dt}.e^{-Bt}}{P}

Now substituting:\int{\bar{p(t)}.e^{At}dt}|_{t=z}=Q_z, \int{\bar{p(t)}.e^{Bt}dt}|_{t=z}=R_z ,where  \int{x(t)dt}|_{t=z} is the primitive of x(t) computed at t=z, in the case z=t this integral is the primitive itself, yields:

x_p(t) = \frac{Q_t.e^{-At}-R_t.e^{-Bt}}{P}

Finally the general solution of the above non-homogeneous equation is represented as:

x(t)=x_h(t)+x_p(t)=C_1.e^{ -B.t}+C_2.e^{ -A.t} +\frac{Q_t.e^{-At}-R_t.e^{-Bt}}{P}

with time derivative:

 \frac{dx}{dt}=-A.e^{-At}.C_2-B.e^{-Bt}.C_1+\frac{1}{P}.[\dot{Q_t}.e^{-At}-A.Q_t.e^{-At}-\dot{R_t}.e^{-Bt}+B.R_t.e^{-Bt}], where \dot{Q_t}=p(t).e^{At},\dot{R_t}=p(t).e^{Bt}

In order to find the unknown constants C1,C2, zero initial conditions will be applied:

x(t)|_{t=0} = 0: C_1+C_2+\frac{Q_0.1-R_0.1}{P}=0C_1+C_2=\frac{R_0-Q_0}{P}
\left. {\frac{{dx}}{{dt}}} \right|_{t=0} = 0: -A.C_2-B.C_1+\frac{1}{P}.[-A.Q_0+B.R_0]=0A.C_2+B.C_1=\frac{1}{P}.[B.R_0-A.Q_0]

Now combining both initial conditions together, the next system of equations is observed:

\left.{\begin{alignat}{5}
C_1 &&\; + &&\; C_2 &&\; = &&\; \frac{R_0-Q_0}{P} & \\
B.C_1 &&\; + &&\; A.C_2 &&\; = &&\; \frac{1}{P}.[B.R_0-A.Q_0]\end{alignat}} \right|{\begin{alignat}{5}
C_1 &&\; = &&\; \frac{R_0}{P} & \\
C_2 &&\; = &&\; -\frac{Q_0}{P}\end{alignat}}

The back substitution of the constants C1 and C2 into the above expression for x(t) yields:

x(t)=\frac{Q_t-Q_0}{P}.e^{ -A.t}-\frac{R_t-R_0}{P}.e^{ -B.t}

Replacing QtQ0 and RtR0 (the difference between the primitives at t=t and t=0) with definite integrals (by another variable τ) will reveal the general solution with zero initial conditions, namely:

x(t)=\frac{1}{P}.[\int_0^t{\bar{p(\tau)}.e^{A\tau}d\tau}.e^{-At}-\int_0^t{\bar{p(\tau)}.e^{B\tau}d\tau}.e^{-Bt}]

Finally substituting  c=2.\xi.\omega.m, \; k=\omega^2.m, accordingly  \bar{c}=2.\xi.\omega, \bar{k}=\omega^2, where ξ<1 yields:

P=2.\omega_D.i, \; A=\xi.\omega-\omega_D.i, \; B=\xi.\omega+\omega_D.i, where \omega_D=\omega.\sqrt{1-\xi^2} and i is the imaginary unit.

Substituting this expressions into the above general solution with zero initial conditions and using the Euler's exponential formula will lead to canceling out the imaginary terms and reveals the Duhamel's solution:

x(t)=\frac{1}{\omega_D}\int_0^t{\bar{p(\tau)}e^{-\xi\omega(t-\tau)}sin(\omega_D(t-\tau))d\tau}

See also

References

  • Ni Zhenhua, Mechanics of Vibrations, Xi'an Jiaotong University Press, Xi'an, 1990 (in Chinese)
  • R. W. Clough, J. Penzien, Dynamics of Structures, Mc-Graw Hill Inc., New York, 1975.
  • Anil K. Chopra, Dynamics of Structures - Theory and applications to Earthquake Engineering, Pearson Education Asia Limited and Tsinghua University Press, Beijing, 2001
  • Leonard Meirovitch, Elements of Vibration Analysis, Mc-Graw Hill Inc., Singapore, 1986

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Duhamel — may refer to: People Alain Duhamel (born 1940), French journalist Antoine Duhamel (born 1925), French composer Denise Duhamel (born 1961), American poet Georges Duhamel (1884–1966), French writer Henri Louis Duhamel du Monceau (1700 1782),… …   Wikipedia

  • Duhamel's principle — In mathematics, and more specifically in partial differential equations, Duhamel s principle is a general method for obtaining solutions to inhomogeneous linear evolution equations like the heat equation, wave equation, and vibrating plate… …   Wikipedia

  • integral de Duhamel — integral de convolución …   Sinónimos de diccionario al español para la tecnología de control automático

  • integral de convolución — integral de Duhamel …   Sinónimos de diccionario al español para la tecnología de control automático

  • Duhamel integral — Duhamelio integralas statusas T sritis automatika atitikmenys: angl. Duhamel integral vok. Duhamel Integral, n; Duhamelsches Integral, n rus. интеграл Дюамеля, m; интеграл свёртки, m pranc. intégrale de Duhamel, f ryšiai: sinonimas – Diuamelio… …   Automatikos terminų žodynas

  • Duhamel-Integral — Duhamelio integralas statusas T sritis automatika atitikmenys: angl. Duhamel integral vok. Duhamel Integral, n; Duhamelsches Integral, n rus. интеграл Дюамеля, m; интеграл свёртки, m pranc. intégrale de Duhamel, f ryšiai: sinonimas – Diuamelio… …   Automatikos terminų žodynas

  • intégrale de Duhamel — Duhamelio integralas statusas T sritis automatika atitikmenys: angl. Duhamel integral vok. Duhamel Integral, n; Duhamelsches Integral, n rus. интеграл Дюамеля, m; интеграл свёртки, m pranc. intégrale de Duhamel, f ryšiai: sinonimas – Diuamelio… …   Automatikos terminų žodynas

  • Duhamelsches Integral — Duhamelio integralas statusas T sritis automatika atitikmenys: angl. Duhamel integral vok. Duhamel Integral, n; Duhamelsches Integral, n rus. интеграл Дюамеля, m; интеграл свёртки, m pranc. intégrale de Duhamel, f ryšiai: sinonimas – Diuamelio… …   Automatikos terminų žodynas

  • Olivier Duhamel — Pour les articles homonymes, voir Duhamel. Olivier Duhamel …   Wikipédia en Français

  • Olivier Duhamel — is a French university professor and politician.[1] He was a Socialist member of the European Parliament from 1997 to 2004.[1][2] Biography Olivier Duhamel was born on 2 May 1950 in Neuilly sur Seine, France …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”