Ion thruster

Ion thruster

An ion thruster is a form of electric propulsion used for spacecraft propulsion that creates thrust by accelerating ions. Ion thrusters are characterized by how they accelerate the ions, using either electrostatic or electromagnetic force. Electrostatic ion thrusters use the Coulomb Force and accelerate the ions in the direction of the electric field. Electromagnetic ion thrusters use the Lorentz Force to accelerate the ions. Note that the term "ion thruster" frequently denotes the electrostatic or gridded ion thrusters, only.

The thrust created in ion thrusters is very small compared to conventional chemical rockets, but a very high specific impulse, or propellant efficiency, is obtained.

Due to their relatively high power needs, given the specific power of power supplies, and the requirement of an environment void of other ionized particles, ion thrust propulsion currently is only practicable in outer space.

Origins

The first experiments with ion thrusters were carried out by Robert Goddard at Clark College from 1916-1917. [ [http://siarchives.si.edu/history/exhibits/documents/goddardmarch1920.htm Robert H. Goddard - American Rocket Pioneer ] ] The technique was recommended for near-vacuum conditions at high altitude, but thrust was demonstrated with ionized air streams at atmospheric pressure.The idea appeared again in Hermann Oberth's "Wege zur Raumschiffahrt” (Ways to Spaceflight), published in 1929, where he explained his thoughts on the mass savings of electric propulsion, predicted its use in spacecraft propulsion and attitude control, and advocated electrostatic acceleration of charged gases. [cite web |url=http://alfven.princeton.edu/papers/choueiriJPP04a.pdf|title=A Critical History of Electric Propulsion: The First50 Years (1906–1956)|accessdate=2007-11-07 |author=E. Y. Choueiri]

A working ion thruster was built by Harold R. Kaufman in 1959 at the NASA Glenn facilities. It was similar to the general design of a gridded electrostatic ion thruster with mercury as its fuel. Suborbital tests of the engine followed during the 1960s and in 1964 the engine was sent into a suborbital flight aboard the Space Electric Rocket Test 1 (SERT 1). It successfully operated for the planned 31 minutes before falling back to Earth. cite web |url=http://www.nasa.gov/centers/glenn/about/fs08grc.html|title=Innovative Engines|accessdate=2007-11-19]

The Hall effect thruster was studied independently in the U.S. and the USSR in the 1950s and 60s. However, the concept of a Hall thruster was only developed into an efficient propulsion device in the former Soviet Union, whereas in the U.S., scientists focused instead on developing gridded ion thrusters. Hall effect thrusters were operated on Soviet satellites since 1972. Until the 1990s they were mainly used for satellite stabilization in North-South and in East-West directions. Some 100-200 engines completed their mission on Soviet and Russian satellites until the late 1990s.ru icon [http://www.novosti-kosmonavtiki.ru/content/numbers/198/35.shtml Native Electric Propulsion Engines Today] , Novosti Kosmonavtiki, 1999, No.7] Soviet thruster design was introduced to the West in 1992 after a team of electric propulsion specialists, under the support of the Ballistic Missile Defense Organization, visited Soviet laboratories.

General Description

Ion thrusters utilize beams of ions (electrically charged atoms or molecules) to create thrust in accordance with Newton's third law. The method of accelerating the ions varies, but all designs take advantage of the charge/mass ratio of the ions. This ratio means that relatively small potential differences can create very high exhaust velocities. This reduces the amount of reaction mass or fuel required, but increases the amount of specific power required compared to chemical rockets. Ion thrusters are therefore able to achieve extremely high specific impulses. The drawback of the low thrust is low spacecraft acceleration because the mass of current electric power units is directly correlated with the amount of power given. This low thrust makes ion thrusters unsuited for launching spacecraft into orbit, but they are ideal for in-space propulsion applications.

Various ion thrusters have been designed and they all generally fit under two categories. The thrusters are categorized as either electrostatic or electromagnetic. The main difference is how the ions are accelerated.
* Electrostatic ion thrusters use the Coulomb Force and are categorized as accelerating the ions in the direction of the electric field.
* Electromagnetic ion thrusters use the Lorentz Force to accelerate the ions.

Electrostatic Ion Thrusters

Gridded electrostatic ion thrusters

Gridded electrostatic ion thrusters commonly utilize xenon gas. This gas has no charge and is ionized by bombarding it with energetic electrons. These electrons can be provided from a hot cathode filament and accelerated in the electrical field of the cathode fall to the anode (Kaufman type ion thruster). Alternatively, the electrons can be accelerated by the oscillating electric field induced by an alternating magnetic field of a coil, which results in a self-sustaining discharge and omits any cathode (radiofrequency ion thruster).

The positively charged ions are extracted by an extraction system consisting of 2 or 3 multi-aperture grids. After entering the grid system via the plasma sheath the ions are accelerated due to the potential difference between the first and second grid (named screen and accelerator grid) to the final ion energy of typically 1-2 keV, thereby generating the thrust.

Ion thrusters emit a beam of positive charged xenon ions only. In order to avoid the charging-up of the spacecraft another cathode, placed near the engine, emits additional electrons (basically the electron current is the same as the ion current) into the ion beam. This also prevents the beam of ions from returning to the spacecraft and thereby cancelling the thrust.

Gridded electrostatic ion thruster research (past/present):
*NASA Solar electric propulsion Technology Application Readiness (NSTAR)
*NASA’s Evolutionary Xenon Thruster (NEXT)
*Nuclear Electric Xenon Ion System (NEXIS)
*High Power Electric Propulsion ( [http://en.wikipedia.org/wiki/HiPEP] HiPEP)
*EADS Radio-Frequency Ion Thruster (RIT)
*Dual-Stage 4-Grid (DS4G) [cite press release | title =ESA and ANU make space propulsion breakthrough | publisher = ESA | date =2006-01-11 | url = http://www.esa.int/esaCP/SEMOSTG23IE_index_0.html | format = | language = | accessdate = 2007-06-29 | quote = ] [cite web |url=http://prl.anu.edu.au/SP3/research/SAFEandDS4G/webstory |title=ANU and ESA make space propulsion breakthrough |accessdate=2007-06-30 |author=ANU Space Plasma, Power & Propulsion Group (SP3) |authorlink= |coauthors= |date=2006-12-06 |year= |month= |format= |work=DS4G Web Story |publisher=The Australian National University |pages= |language= |archiveurl= |archivedate= |quote= ]

Hall effect thrusters

Hall effect thrusters accelerate ions with the use of an electric potential maintained between a cylindrical anode and a negatively charged plasma which forms the cathode. The bulk of the propellant (typically xenon or bismuth gas) is introduced near the anode, where it becomes ionised, and the ions are attracted towards the cathode, they accelerate towards and through it, picking up electrons as they leave to neutralise the beam and leave the thruster at high velocity.

The anode is at one end of a cylindrical tube, and in the center is a spike which is wound to produce a radial magnetic field between it and the surrounding tube. The ions are largely unaffected by the magnetic field, since they are too massive. However, the electrons produced near the end of the spike to create the cathode are far more affected and are trapped by the magnetic field, and held in place by their attraction to the anode. Some of the electrons spiral down towards the anode, circulating around the spike in a Hall current. When they reach the anode they impact the uncharged propellant and cause it to be ionised, before finally reaching the anode and closing the circuit.cite web |url=http://gltrs.grc.nasa.gov/reports/2001/TM-2001-210676.pdf|title=Advanced Hall Electric Propulsion for Future In-Space Transportation|accessdate=2007-11-21|author=Oleson, S. R., & Sankovic, J. M.]

Field Emission Electric Propulsion (FEEP)

Field Emission Electric Propulsion (FEEP) thrusters use a very simple system of accelerating liquid metal ions to create thrust. Most designs use either caesium or indium as the propellant. The design consists of a small propellant reservoir that stores the liquid metal, a very small slit that the liquid flows through, and then the accelerator ring. Caesium and indium are used due to their high atomic weights, low ionization potentials, and low melting points. Once the liquid metal reaches the inside of the slit in the emitter, an electric field applied between the emitter and the accelerator ring causes the liquid metal to become unstable and ionize. This creates a positive ion, which can then be accelerated in the electric field created by the emitter and the accelerator ring. These positively charged ions are then neutralized by an external source of electrons in order to prevent charging of the spacecraft hull. [cite web |url=http://www.centrospazio.cpr.it/FEEPPrinciple.html|title=The FEEP Principle|accessdate=2007-11-21|author=Marcuccio, S.] [cite web |url=http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/11649/1/02-0194.pdf|title=In-FEEP Thruster Ion Beam Neutralization with Thermionic and Field Emission Cathodes|accessdate=2007-11-21|author=Colleen Marrese-Reading, Jay Polk, Juergen Mueller, Al Owens]

Electromagnetic or Plasma Thrusters

Pulsed Inductive Thrusters (PIT)

Pulsed Inductive Thrusters (PIT) use pulses of thrust instead of one continuous thrust, and have the ability to run on power levels in the order of Megawatts (MW). PITs consist of a large coil encircling a cone shaped tube that emits the propellant gas as shown in the diagram. Ammonia is the gas commonly used in PIT engines. For each pulse of thrust the PIT gives, a large charge first builds up in a group of capacitors behind the coil and is then released. This creates a current that moves circularly in the direction of jθ as seen in the diagram. The current then creates a magnetic field in the outward radial direction (Br), which then creates a current in the ammonia gas that has just been released in the opposite direction of the original current. This opposite current ionizes the ammonia and these positively charged ions are accelerated away from the PIT engine due to the electric field jθ crossing with the magnetic field Br, which is due to the Lorentz Force. [cite web |url=http://gltrs.grc.nasa.gov/reports/2003/CR-2003-212714.pdf|title=Pulsed Inductive Thruster (PIT): Modeling and Validation Using the MACH2 Code|accessdate=2007-11-21|author=Pavlos G. Mikellides]

Magnetoplasmadynamic (MPD) / Lithium Lorentz Force Accelerator (LiLFA)

Magnetoplasmadynamic (MPD) thrusters and Lithium Lorentz Force Accelerator (LiLFA) thrusters use roughly the same idea with the LiLFA thruster building off of the MPD thruster. Hydrogen, argon, ammonia, and nitrogen gas can be used as propellant. The gas first enters the main chamber where it is ionized into plasma by the electric field between the anode and the cathode. This plasma then conducts electricity between the anode and the cathode. This new current creates a magnetic field around the cathode which crosses with the electric field, thereby accelerating the plasma due to the Lorentz Force. The LiLFA thruster uses the same general idea as the MPD thruster, except for two main differences. The first difference is that the LiLFA uses lithium vapor, which has the advantage of being able to be stored as a solid. The other difference is that the cathode is replaced by multiple smaller cathode rods packed into a hollow cathode tube. The cathode in the MPD thruster is easily corroded due to constant contact with the plasma. In the LiLFA thruster the lithium vapor is injected into the hollow cathode and is not ionized to its plasma form/corrode the cathode rods until it exits the tube. The plasma is then accelerated using the same Lorentz Force. cite web |url=http://alfven.princeton.edu/papers/Astrodyn-Finalabstext.htm|title=A Survey of Propulsion Options for Cargo and Piloted Missions to Mars|accessdate=2007-11-21|author=K. Sankaran, L. Cassady, A.D. Kodys and E.Y. Choueiri] [cite web |url=http://gltrs.grc.nasa.gov/reports/2001/CR-2001-211114.pdf|title=High Power MPD Thruster Development at the NASA Glenn Research Center|accessdate=2007-11-21|author=Michael R. LaPointe and Pavlos G. Mikellides]

Electrodeless Plasma Thrusters

Electrodeless Plasma Thrusters have two unique features, the removal of the anode and cathode electrodes and the ability to throttle the engine. The removal of the electrodes takes away the factor of erosion which limits lifetime on other ion engines. Neutral gas is first ionized by electromagnetic waves and then transferred to another chamber where it is accelerated by an oscillating electric and magnetic field, also known as the ponderomotive force. This separation of the ionization and acceleration stage give the engine the ability to throttle the speed of propellant flow, which then changes the thrust magnitude and specific impulse values. [cite web |url=http://www.elwingcorp.com/files/IEPC05-article.pdf|title=Development of a High Power Electrodeless Thruster|accessdate=2007-11-21|author=Gregory D. Emsellem]

Comparisons

The following table compares actual test data of some ion thrusters:

The following thrusters are highly experimental and have been tested only in pulse mode.

Lifetime

A major limiting factor of ion thrusters is their small thrust, which however is generated at a high propellant efficiency (mass utilisation, specific impulse). The efficiency comes from the high exhaust velocity, which in turn demands a lot of energy, and the performance is ultimately limited by the available spacecraft power.

The low thrust requires ion thrusters to provide continuous thrust for a very long time in order to achieve the needed change in velocity (delta-v) for a particular mission. To achieve these delta-vs, ion thrusters are designed to last for periods of weeks to years.

In practice the lifetime of ion thrusters is limited by several processes.

In the electrostatic gridded ion thruster design, charge-exchange ions produced by the beam ions with the neutral gas flow can be accelerated towards the negatively biased accelerator grid and cause grid erosion. End-of-life is reached when either a structural failure of the grid occurs or the holes in the accelerator grid become so large that the ion extraction is largely affected (e.g. by the occurrence of electron backstreaming). Grid erosion cannot be avoided and is the major lifetime-limiting factor. By a thorough grid design and material selection lifetimes of 20,000 hours and far beyond are reached which is sufficient to fulfill current space missions. A test of the NASA Solar electric propulsion Technology Application Readiness (NSTAR) electrostatic ion thruster resulted in 30,472 hours (roughly 3.5 years) of continuous thrust at maximum power. The test was concluded prior to any failure and test results showed the engine was not approaching failure either. [cite web |url=http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/39521/1/05-2793.pdf|title=Destructive Physical Analysis of Hollow Cathodes from the Deep Space 1 Flight Spare Ion Engine 30,000 Hr Life Test|accessdate=2007-11-21]

The Hall thrusters suffer from very strong erosion of the ceramic discharge chamber. Due to the rather high discharge voltages of up to 1000V energetic ions can impinge to the chamber walls and erode material. Lifetimes of a few thousand hours are reached.

Propellants

Ionisation energy represents a very large percentage of the energy needed to run ion drives. The ideal propellant for ion drives is thus a propellant molecule or atom with a high mass/ionisation energy ratio. In addition, the propellant should not cause erosion of the thruster to any great degree to permit long life; and should not contaminate the vehicle.

Many current designs use xenon gas due to its low ionisation, reasonably high atomic number, inert nature, and low erosion. However, xenon is globally in short supply and very expensive.

Older designs used mercury, but this is toxic and expensive, and tended to contaminate the vehicle with the metal.

Other propellants such as bismuth show promise and are areas of research, particularly for gridless designs such as Hall effect thrusters.

Applications

Ion thrusters have many applications for in-space propulsion. The best applications of the thrusters make use of the long lifetime when significant thrust is not needed. Examples of this include orbit transfers, attitude adjustments, drag compensation for low earth orbits, and ultra fine adjustments for more scientific missions. Ion thrusters can also be used for interplanetary and deep space missions where time is not crucial. Continuous thrust over a very long time can potentially build up a larger velocity than traditional chemical rockets.

Missions

Of all the electric thrusters, ion thrusters have been the most seriously considered commercially and academically in the quest for interplanetary missions and orbit raising maneuvers. Ion thrusters are seen as the best solution for these missions as they require very high change in velocity overall that can be built up over long periods of time. Several spacecraft have operated with this technology.

ERT

The first was SERT (Space Electric Rocket Test) which tested two mercury ion engines for thousands of running hours in the 1970s. [ [http://www.grc.nasa.gov/WWW/ion/past/70s/sert2.htm Space Electric Rocket Test] ]

Deep Space 1

NASA has developed an ion thruster called NSTAR for use in their interplanetary missions. This thruster was tested in the highly successful space probe Deep Space 1, launched in 1998. Hughes has developed the XIPS (Xenon Ion Propulsion System) for performing stationkeeping on geosynchronous satellites. These are electrostatic ion thrusters that work by a principle different from that of the Hall effect thruster.

Artemis

On 12 July 2001, the European Space Agency failed to launch their Artemis telecommunication satellite to desired altitude, and left it in a decaying orbit. The satellite's chemical propellant supply was sufficient to transfer it to a semi-stable orbit, and over the next 18 months the experimental onboard ion propulsion system RIT-10 [http://cs.astrium.eads.net/sp/SpacecraftPropulsion/IonPropulsion.html EADS Astrium, performance data on RIT-10, RIT-XT and RIT-22] ] (intended for secondary stationkeeping and maneuvering) was utilized to transfer it to a geostationary orbit. [cite web |url=http://www.esa.int/esaTE/SEM1LT0P4HD_index_0.html |title=Artemis team receives award for space rescue |accessdate=2006-11-16 |author=ESA |authorlink=European Space Agency|language=]

Hayabusa

The Japanese space agency's Hayabusa, which was launched in 2003 and successfully rendezvoused with the asteroid 25143 Itokawa and remained in close proximity for many months to collect samples and information, is powered by four xenon Ion Engines. It is using xenon ions generated by microwave ECR, and a Carbon / Carbon-composite material for acceleration grid which is resistant to erosion. [cite web |url=http://www.ep.isas.ac.jp/muses-c/ |title=小惑星探査機はやぶさ搭載イオンエンジン (Ion Engines used on Asteroid Probe Hayabusa) |accessdate=2006-10-13 |author=ISAS |authorlink=Institute of Space and Astronautical Science |language=Japanese]

mart 1

The Hall effect thruster is a type of ion thruster that has been used for decades for station keeping by the Soviet Union and is now also applied in the West: the European Space Agency's satellite Smart 1, launched in 2003, used it (Snecma PPS-1350-G). This satellite completed its mission on 3 September 2006, in a controlled collision on the Moon's surface, after a trajectory deviation to be able to see the 3 meter crater the impact created on the visible side of the moon.

Dawn

Dawn was launched on 27 September 2007 to explore the dwarf planet Ceres and the asteroid Vesta. To cruise from Earth to its targets it will use three Deep Space 1 heritage Xenon ion thrusters (firing only one at a time) to take it in a long outward spiral. An extended mission in which Dawn explores other asteroids after Ceres is also possible. Dawn's ion drive is capable of accelerating from 0 to convert|60|mi/h|km/h|abbr=on in 4 days. [ [http://www.jpl.nasa.gov/news/features.cfm?feature=1468 Dawn] ]

LISA Pathfinder

LISA Pathfinder is an ESA spacecraft to be launched in 2009. It will not use ion thrusters as its primary propulsion system, but will use both colloid thrusters and FEEP for very precise attitude control—the low thrusts of these propulsion devices make it possible to move the spacecraft incremental distances very accurately. It is a test for the possible LISA mission.

ee also

* Electric propulsion
*Colloid thrusters [cite web |url=http://ocw.mit.edu/NR/rdonlyres/Aeronautics-and-Astronautics/16-522Spring2004/F342AA44-6F9A-413E-8054-F276524D5F23/0/lecture23_25.pdf|title=Collodal Engines|accessdate=2007-11-21|author=Martinez-Sanchez, Manuel]
* Spacecraft propulsion
* Nuclear electric rocket
* Hall effect thruster
* Magnetoplasmadynamic thruster
* Electrodeless plasma thruster
* Field Emission Electric Propulsion
* Pulsed inductive thruster
* VASIMR

References

*
* [http://www.rmcybernetics.com/science/propulsion/ehdt.htm ElectroHydroDynamic Thrusters (EHDT)] , RMCybernetics.


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Electrostatic ion thruster — The electrostatic ion thruster is a kind of design for ion thrusters (a kind of highly efficient low thrust spacecraft propulsion running on electrical power). These designs use high voltage electrodes in order to accelerate ions with… …   Wikipedia

  • Ion wind — Ion wind, ionic wind, or coronal wind is a stream of ionized fluid generated by a strong electric field. Francis Hauksbee, curator of instruments for the Royal Society of London, made the earliest report of electric wind in 1709.[1] Myron… …   Wikipedia

  • Thruster — A thruster is a small propulsive device used by spacecraft and watercraft for station keeping, attitude control, or long duration low thrust acceleration.Thruster (surfing) is a surfboard fin design.Spacecraft thrusters,*Electrohydrodynamic… …   Wikipedia

  • Hall effect thruster — In spacecraft propulsion, a Hall thruster is a type of ion thruster in which the propellant is accelerated by an electric field. Hall thrusters trap electrons in a magnetic field and then use the electrons to ionize propellant, efficiently… …   Wikipedia

  • Electrohydrodynamic thruster — EHD thruster stands for electrohydrodynamic thruster. This is the general and most appropriate term used for high voltage devices that propel air or other fluids, to achieve relative motion between the propulsion device and the propelled fluid.… …   Wikipedia

  • Magnetoplasmadynamic thruster — An MPD thruster during test firing The Magnetoplasmadynamic (MPD) thruster (MPDT) is a form of electrically powered spacecraft propulsion which uses the Lorentz force (a force resulting from the interaction between a magnetic field and an… …   Wikipedia

  • Colloid thruster — 20 μN colloid thruster system.[1] A colloid thruster is a type of thruster which uses electrostatic acceleration of charged liquid droplets for propulsion. It is closely related to electrospray ionization and other hydrodynamic spraying processes …   Wikipedia

  • Pulsed inductive thruster — Pulsed inductive thrusters (or PITs) are a form of ion thruster, used in spacecraft propulsion. A PIT uses perpendicular electric and magnetic fields to accelerate a propellant. A nozzle releases a puff of gas (usually ammonia or argon) which… …   Wikipedia

  • Electrodeless plasma thruster — The electrodeless plasma thruster is a spacecraft propulsion engine. It was created by Mr. Gregory Emsellem based on technology developed by French Atomic Energy Commission scientist Dr Richard Geller and Dr. Terenzio Consoli, for high speed… …   Wikipedia

  • Helicon Double Layer Thruster — The Helicon Double Layer Thruster is a prototype spacecraft propulsion engine. It was created by Australian scientist Dr. Christine Charles, based on a technology invented by Professor Rod Boswell, both of the Australian National University.The… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”