Bird evolution

Bird evolution

The evolution of birds is thought to have begun in the Jurassic Period, with the earliest birds derived from theropod dinosaurs. Birds are categorized as a biological class, Aves. The earliest known species of class Aves is "Archaeopteryx lithographica", from the Late Jurassic period, though Archaepteryx is not commonly considered to have been a true bird. Modern phylogenies place birds in the dinosaur clade Theropoda. According to the current consensus, Aves and a sister group, the order Crocodilia, together are the sole living members of an unranked "reptile" clade, the Archosauria.

Phylogenetically, Aves is usually defined as all descendants of the most recent common ancestor of a specific modern bird species (such as the House Sparrow, "Passer domesticus"), and either "Archaeopteryx", [cite book |author=Padian K & Chiappe LM |editor=Currie PJ & Padian K |title=Encyclopedia of Dinosaurs|origdate= |year=1997|publisher=Academic Press|location=San Diego|isbn= |id= |pages=41-96|chapter=Bird Origins] or some prehistoric species closer to Neornithes (to avoid the problems caused by the unclear relationships of "Archaeopteryx" to other theropods). [cite book |last=Gauthier |first=J|editor=Padian K |title=The Origin of Birds and the Evolution of Flight. Mem. California Acad. Sci 8|year=1986|isbn= |oclc= |doi= |id= |pages=1-55|chapter=Saurischian Monophyly and the origin of birds] If the latter classification is used then the larger group is termed Avialae.

Origins

::"see also: Avicephala"There is significant evidence that birds evolved from theropod dinosaurs, specifically, that birds are members of Maniraptora, a group of theropods which includes dromaeosaurs and oviraptorids, among others. [Hou L,Martin M, Zhou Z & Feduccia A, (1996) "Early Adaptive Radiation of Birds: Evidence from Fossils from Northeastern China" "Science" 274(5290): 1164-1167 [http://www.sciencemag.org/cgi/content/abstract/274/5290/1164 Abstract] ] As more non-avian theropods that are closely related to birds are discovered, the formerly clear distinction between non-birds and birds becomes less so. Recent discoveries in northeast China (Liaoning Province), demonstrating that many small theropod dinosaurs had feathers, contribute to this ambiguity. [Norell, M & Ellison M (2005) "Unearthing the Dragon, The Great Feathered Dinosaur Discovery" Pi Press, New York, ISBN 0-13-186266-9]

The basal bird "Archaeopteryx", from the Jurassic, is well-known as one of the first "missing links" to be found in support of evolution in the late 19th century, though it is not considered a direct ancestor of modern birds. "Confuciusornis" is another early bird; it lived in the Early Cretaceous. Both may be predated by "Protoavis texensis", though the fragmentary nature of this fossil leaves it open to considerable doubt if this was a bird ancestor. Other Mesozoic birds include the "Confuciusornis", the Enantiornithes, "Yanornis", "Ichthyornis", "Gansus", and the Hesperornithiformes - a group of flightless divers resembling grebes and loons.

The recently (2002) discovered dromaeosaur "Cryptovolans" (which may be a "Microraptor") was capable of powered flight, possessed a sternal keel and had ribs with uncinate processes. In fact, "Cryptovolans" makes a better "bird" than "Archaeopteryx" which is missing some of these modern bird features. Because of this, some paleontologists have suggested that dromaeosaurs are actually basal birds whose larger members are secondarily flightless, i.e. that dromaeosaurs evolved from birds and not the other way around. Evidence for this theory is currently inconclusive, but digs continue to unearth fossils (especially in China) of the strange feathered dromaeosaurs. At any rate, it is fairly certain that flight utilizing feathered wings existed in the mid-Jurassic theropods and was "tried out" in several lineages and variants by the mid-Cretaceous, such as in "Confuciusornis" which had some peculiar features. For example, its vestigial tail was unfit for steering, and its wing shape seems rather specialized although the arm skeleton was still quite "dinosaurian").

Although ornithischian (bird-hipped) dinosaurs share the same hip structure as birds, birds actually originated from the saurischian (lizard-hipped) dinosaurs if the dinosaurian origin theory is correct. They thus arrived at their hip structure condition independently. In fact, the bird-like hip structure also developed a third time among a peculiar group of theropods, the Therizinosauridae.

An alternate theory to the dinosaurian origin of birds, espoused by a few scientists (notably Larry Martin and Alan Feduccia), states that birds (including maniraptoran "dinosaurs") evolved from early archosaurs like "Longisquama", [ Feduccia A, Lingham-Soliar T, Hinchliffe JR (2005) "Do feathered dinosaurs exist? Testing the hypothesis on neontological and paleontological evidence" "Journal of Morphology" 266(2): 125-166] a theory which is contested by most other paleontologists, and by experts in feather development and evolution. [Prum R (2003) "Are Current Critiques Of The Theropod Origin Of Birds Science? Rebuttal To Feduccia 2002" "Auk" 120(2) 550-561 ]

Adaptive radiation of birds

Modern birds are classified in Neornithes, which are now known to have evolved into some basic lineages by the end of the Cretaceous (see "Vegavis" ). The Neornithes are split into the paleognaths and neognaths.

Paleognathae The paleognaths include the tinamous (found only in Central and South America) and the ratites which nowadays are found almost exclusively on the Southern Hemisphere. The ratites are large flightless birds, and include ostriches, cassowaries, kiwis and emus. A few scientists propose that the ratites represent an artificial grouping of birds which have independently lost the ability to fly in a number of unrelated lineagesFact|date=April 2007; in any case, the available data regarding their evolution is still very confusing.

Neognathae The basal divergence from the remaining Neognathes was that of the Galloanserae, the superorder containing the Anseriformes (ducks, geese and swans), and the Galliformes (chickens, turkeys, pheasants, and their allies).

The dates for the splits are a matter of considerable debate amongst scientists. It is agreed that the Neornithes evolved in the Cretaceous and that the split between the Galloanserae and the other neognaths - the Neoaves - occurred before the K-T extinction event, but there are different opinions about whether the radiation of the remaining neognaths occurred before of after the extinction of the other dinosaurs.Ericson PGP, Anderson CL, Britton T, Elzanowski A, Johansson US, Kallersjo M, Ohlson JI, Parsons TJ, Zuccon D, Mayr G (2006)"Diversification of Neoaves: integration of molecular sequence data and fossils" "Biology Letters" 2(4): 543-547 ] This disagreement is in part caused by a divergence in the evidence, with molecular dating suggesting a Cretaceous radiation, a small and equivocal neoavian fossil record from Cretaceous, and most living families turning up during the Paleogene. Attempts made to reconcile the molecular and fossil evidence have proved controversial. [Brown J, Payn B, & Mindell D (2006) "Nuclear DNA does not reconcile ‘rocks’ and ‘clocks’ in Neoaves: a comment on Ericson "et al." "Biology Letters" 3 1-3]

On the other hand, two factors must be considered: First, molecular clocks cannot be considered reliable in the absence of robust fossil calibration, whereas the fossil record is naturally incomplete. Second, in reconstructed phylogenetic trees, the time and pattern of lineage separation corresponds to the evolution of the "characters" (such as DNA sequences, morphological traits etc) studied, "not" to the actual evolutionary pattern of the lineages; these ideally should not differ by much, but may well do so in practice.

Considering this, it is easy to see that fossil data, compared to molecular data, tends to be more accurate in general, but also to underestimate divergence times: morphological traits, being the product of entire developmental genetics networks, usually only start to diverge some time "after" a lineage split would become apparent in DNA sequence comparison - especially if the sequences used contain many silent mutations.

Classification of modern species

::"see also: Sibley-Ahlquist taxonomy and dinosaur classification"The phylogenetic classification of birds is a contentious issue. Sibley & Ahlquist's "Phylogeny and Classification of Birds" (1990) is a landmark work on the classification of birds (although frequently debated and constantly revised). A preponderance of evidence suggests that most modern bird orders constitute good clades. However, scientists are not in agreement as to the precise relationships between the orders; evidence from modern bird anatomy, fossils and DNA have all been brought to bear on the problem but no strong consensus has emerged. As of the mid-2000s, new fossil and molecular data provide an increasingly clear picture of the evolution of modern bird orders, and their relationships. For example, the Charadriiformes seem to consititute an ancient and distinct lineage. Our understanding of the interrelationships of lower level taxa also continue to increase, particularly in the massively diverse perching bird order Passeriformes.

On June 27, 2008, the largest study of bird genetics was published which overturns several hypothesized relationships, and will likely necessitate a wholesale restructuring of the avian phylogenetic tree. [ [http://www.sciencedaily.com/releases/2008/06/080626141117.htm Science Daily, June 27, 2008] ]

Current evolutionary trends in birds

::"See also: Bird conservation"

Evolution generally occurs at a scale far too slow to be witnessed by humans. However, bird species are currently going extinct at a far greater rate than any possible speciation or other generation of new species. The disappearance of a population, subspecies, or species represents the permanent loss of a range of genes.

Another concern with evolutionary implications is a suspected increase in hybridization. This may arise from human alteration of habitats enabling related allopatric species to overlap. Forest fragmentation can create extensive open areas, connecting previously isolated patches of open habitat. Populations that were isolated for sufficient time to diverge significantly, but not sufficient to be incapable of producing fertile offspring may now be interbreeding so broadly that the integrity of the original species may be compromised. For example, the many hybrid hummingbirds found in northwest South America may represent a threat to the conservation of the distinct species involved. cite book |last=Fjeldså |first=Jon |coauthors= Niels Krabbe. |year=1990 |title= Birds of the High Andes: A Manual to the Birds of the Temperate Zone of the Andes and Patagonia, South America |publisher=Apollo Books|id=ISBN 8788757161 ]

Several species of birds have been bred in captivity to create variations on wild species. In some birds this is limited to color variations, while others are bred for larger egg or meat production, for flightlessness or other characteristics.

Some species, like the rock pigeon or several species of crows have been successful living in man made environments. Because these new habitats are different from their far less numerous "natural" habitats these species are to a certain extend evolutionary adapting to living close to man.

References


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Bird vocalization — Bird song redirects here. For other uses, see Birdsong (disambiguation). A male Blackbird (Turdus merula) singing. Bogense havn, Funen, Denmark.   …   Wikipedia

  • Bird intelligence — deals with the definition of intelligence and its measurement as it applies to birds. Traditionally, birds have been considered inferior in intelligence to mammals, and derogatory terms such as bird brains have been used colloquially in some… …   Wikipedia

  • Evolution —     Evolution (History and Scientific Foundation)     † Catholic Encyclopedia ► Evolution (History and Scientific Foundation)     The world of organisms comprises a great system of individual forms generally classified according to structural… …   Catholic encyclopedia

  • Bird anatomy — Bird anatomy, or the physiological structure of birds bodies, shows many unique adaptations, mostly aiding flight. Birds have evolved a light skeletal system and light but powerful musculature which, along with circulatory and respiratory systems …   Wikipedia

  • Bird ichnology — is the study of avian life traces in ornithology and paleontology. Such life traces can include footprints, nests, feces and coproliths. Scientists gain insight about the behavior and diversity of birds by studying such evidence.Ichnofossils (or… …   Wikipedia

  • bird — birdless, adj. /berrd/, n. 1. any warm blooded vertebrate of the class Aves, having a body covered with feathers, forelimbs modified into wings, scaly legs, a beak, and no teeth, and bearing young in a hard shelled egg. 2. a fowl or game bird. 3 …   Universalium

  • Bird — /berrd/, n. Larry, born 1956, U.S. basketball player. * * * I Any of the warm blooded, beaked vertebrates of the class Aves, including more than 9,600 living species. A covering of feathers distinguishes birds from all other animals. Birds have a …   Universalium

  • Bird — For other uses, see Bird (disambiguation). Aves and Avifauna redirect here. For other uses, see Aves (disambiguation) or Avifauna (disambiguation). Birds Temporal range: Late Jurassic–Recent, 150–0 Ma …   Wikipedia

  • Bird flight — Flight is the main mode of locomotion used by most of the world s bird species. Flight assists birds while feeding, breeding and avoiding predators.Evolution of bird flightMost paleontologists agree that birds evolved from small theropod… …   Wikipedia

  • Bird migration — A flock of Barnacle Geese during autumn migration …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”