Trigonometric substitution

Trigonometric substitution

In mathematics, trigonometric substitution is the substitution of trigonometric functions for other expressions. One may use the trigonometric identities to simplify certain integrals containing radical expressions:

: ext{For } sqrt{a^2-x^2} ext{ let } x=a sin( heta) ext{ and use } 1-sin^2( heta) = cos^2( heta)

: ext{For } sqrt{a^2+x^2} ext{ let } x=a an( heta) ext{ and use } 1+ an^2( heta) = sec^2( heta)

: ext{For } sqrt{x^2-a^2} ext{ let } x=a sec( heta) ext{ and use } sec^2( heta)-1 = an^2( heta)

Examples

Integrals containing "a"2 − "x"2

In the integral

:intfrac{dx}{sqrt{a^2-x^2

we may use

:x=asin( heta), dx=acos( heta),d heta: heta=arcsinleft(frac{x}{a} ight)

so that the integral becomes

:intfrac{dx}{sqrt{a^2-x^2 = intfrac{acos( heta),d heta}{sqrt{a^2-a^2sin^2( heta) = intfrac{acos( heta),d heta}{sqrt{a^2(1-sin^2( heta)) : {} = intfrac{acos( heta),d heta}{sqrt{a^2cos^2( heta) = int d heta= heta+C=arcsinleft(frac{x}{a} ight)+C

Note that the above step requires that "a" > 0 and cos("&theta;") > 0; we can choose the "a" to be the positive square root of "a"2; and we impose the restriction on "&theta;" to be −&pi;/2 < "&theta;" < &pi;/2 by using the arcsin function.

For a definite integral, one must figure out how the bounds of integration change. For example, as "x" goes from 0 to "a"/2, then sin(&theta;) goes from 0 to 1/2, so &theta; goes from 0 to &pi;/6. Then we have

:int_0^{a/2}frac{dx}{sqrt{a^2-x^2=int_0^{pi/6}d heta=frac{pi}{6}.

Some care is needed when picking the bounds. The integration above requires that −&pi;/2 < "&theta;" < &pi;/2, so "&theta;" going from 0 to &pi;/6 is the only choice. If we had missed this restriction, we might have picked "&theta;" to go from &pi; to 5&pi;/6, which would result in the negative of the result.

Integrals containing "a"2 + "x"2

In the integral

:intfrac{dx}{a^2+x^2}

we may write

:x=a an( heta), dx=asec^2( heta),d heta

: heta=arctanleft(frac{x}{a} ight)

so that the integral becomes

:egin{align}& {} quad intfrac{dx}{a^2+x^2} = intfrac{asec^2( heta),d heta}{a^2+a^2 an^2( heta)} = intfrac{asec^2( heta),d heta}{a^2(1+ an^2( heta))} \& {} = int frac{asec^2( heta),d heta}{a^2sec^2( heta)} = int frac{d heta}{a} = frac{ heta}{a}+C = frac{1}{a} arctan left(frac{x}{a} ight)+Cend{align}

(provided "a" > 0).

Integrals containing "x"2 − "a"2

Integrals like

:intfrac{dx}{x^2 - a^2}

should be done by partial fractions rather than trigonometric substitutions. However, the integral

:intsqrt{x^2 - a^2},dx

can be done by substitution:

:x = a sec( heta), dx = a sec( heta) an( heta),d heta

: heta = arcsecleft(frac{x}{a} ight)

:egin{align}& {} quad intsqrt{x^2 - a^2},dx = intsqrt{a^2 sec^2( heta) - a^2} cdot a sec( heta) an( heta),d heta \& {} = intsqrt{a^2 (sec^2( heta) - 1)} cdot a sec( heta) an( heta),d heta = intsqrt{a^2 an^2( heta)} cdot a sec( heta) an( heta),d heta \& {} = int a^2 sec( heta) an^2( heta),d heta = a^2 int sec( heta) (sec^2( heta) - 1),d heta \& {} = a^2 int (sec^3( heta) - sec( heta)),d heta.end{align}

We can then solve this using the formula for the integral of secant cubed.

ubstitutions that eliminate trigonometric functions

Substitution can be used to remove trigonometric functions. For instance,

:int f(sin x,cos x),dx=intfrac1{pmsqrt{1-u^2fleft(u,pmsqrt{1-u^2} ight),du, qquad qquad u=sin x

:int f(sin x,cos x),dx=intfrac{-1}{pmsqrt{1-u^2fleft(pmsqrt{1-u^2},u ight),du qquad qquad u=cos x(but be careful with the signs)

:int f(sin x,cos x),dx=intfrac2{1+u^2} fleft(frac{2u}{1+u^2},frac{1-u^2}{1+u^2} ight),du qquad qquad u= anfrac x2

:intfrac{cos x}{(1+cos x)^3},dx = intfrac2{1+u^2}frac{frac{1-u^2}{1+u^2{left(1+frac{1-u^2}{1+u^2} ight)^3},du =

:frac{1}{4}int(1-u^4),du = frac{1}{4}left(u-frac15u^5 ight) + C = frac{(1+3cos x+cos^2x)sin x}{5(1+cos x)^3} + C

ee also

* Tangent half-angle formula


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Trigonometric functions — Cosine redirects here. For the similarity measure, see Cosine similarity. Trigonometry History Usage Functions Generalized Inverse functions …   Wikipedia

  • Trigonometric rational function — In mathematics, a trigonometric rational function is a rational function in the functions sin theta; and cos theta;. Equivalently, it is a ratio of trigonometric polynomials. The simplest examples (besides sin theta; and cos theta; themselves)… …   Wikipedia

  • List of trigonometric identities — Cosines and sines around the unit circle …   Wikipedia

  • Inverse trigonometric functions — Trigonometry History Usage Functions Generalized Inverse functions Further reading …   Wikipedia

  • Differentiation of trigonometric functions — Trigonometry History Usage Functions Generalized Inverse functions Further reading …   Wikipedia

  • Integration by substitution — Topics in Calculus Fundamental theorem Limits of functions Continuity Mean value theorem Differential calculus  Derivative Change of variables Implicit differentiation Taylor s theorem Related rates …   Wikipedia

  • Integral — This article is about the concept of integrals in calculus. For the set of numbers, see integer. For other uses, see Integral (disambiguation). A definite integral of a function can be represented as the signed area of the region bounded by its… …   Wikipedia

  • Trigonometry — Trig redirects here. For other uses, see Trig (disambiguation). The Canadarm2 robotic manipulator on the International Space Station is operated by controlling the angles of its joints. Calculating the final position of the astronaut at the end… …   Wikipedia

  • Sine — For other uses, see Sine (disambiguation). Sine Basic features Parity odd Domain ( ∞,∞) Codomain [ 1,1] P …   Wikipedia

  • List of basic trigonometry topics — For a more comprehensive list, see the List of trigonometry topics. Trigonometry is a branch of mathematics which deals with angles, triangles and trigonometric functions such as sine, cosine and tangent.The following outline is provided as an… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”