Kurt Mahler

Kurt Mahler
Kurt Mahler, 1970

Kurt Mahler (26 July 1903, Krefeld, Germany – 25 February 1988, Canberra, Australia) was a mathematician and Fellow of the Royal Society.

He was a student at the universities in Frankfurt and Göttingen, graduating with a Ph.D. from Johann Wolfgang Goethe University of Frankfurt am Main in 1927.[1] He left Germany with the rise of Hitler and accepted an invitation by Louis Mordell to go to Manchester. He became a British citizen in 1946.

Mahler held the following positions:

He was elected a member of the Royal Society in 1948 and a member of the Australian Academy of Science in 1965. He was awarded the London Mathematical Society's Senior Berwick Prize in 1950, the De Morgan Medal, 1971, and the Thomas Ranken Lyle Medal, 1977.

He spoke fluent Chinese and was an expert photographer.

Mahler proved that the Prouhet–Thue–Morse constant and the Champernowne constant 0.1234567891011121314151617181920... are transcendental numbers.[2][3]

See also

Notes

  1. ^ Kurt Mahler at the Mathematics Genealogy Project.
  2. ^ Kurt Mahler, "Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen", Math. Annalen, t. 101 (1929), p. 342–366.
  3. ^ Kurt Mahler, "Arithmetische Eigenschaften einer Klasse von Dezimalbrüchen", Proc. Konin. Neder. Akad. Wet. Ser. A. 40 (1937), p. 421–428.



Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Kurt Mahler — (* 26. Juli 1903 in Krefeld; † 25. Februar 1988 in Canberra, Australien) war ein deutschstämmiger britischer Mathematiker, der sich vor allem mit Zahlentheorie beschäftigte (Theorie p adischer Zahlen) …   Deutsch Wikipedia

  • Kurt Mahler — Pour les articles homonymes, voir Mahler (homonymie). Kurt Mahler en 1970 Kurt Mahler, né le 26 juillet 1903, à Krefeld, en …   Wikipédia en Français

  • Mahler — steht für: Mahler (Film) (1974), Film von Ken Russell über Gustav Mahler Mahler ist der Familienname folgender Personen: Alma Mahler Werfel geb. Schindler (1879–1964), Österreicherin, in erster Ehe mit Gustav Mahler verheiratet Anna Mahler… …   Deutsch Wikipedia

  • Mahler (surname) — Mahler most often refers to Gustav Mahler, Bohemian Austrian composer and conductor. His family included: Alma Mahler Werfel (1879–1964), Austrian socialite and wife of, successively, Gustav Mahler, Walter Gropius and Franz Werfel Anna Mahler… …   Wikipedia

  • Mahler (disambiguation) — Mahler most often refers to Gustav Mahler, Bohemian Austrian composer and conductor.Other people named Mahler (German meaning someone who grinds ) include: * Alma Mahler (1879 1964), Austrian composer and painter, wife of Gustav Mahler * Anna… …   Wikipedia

  • Mahler volume — In convex geometry, the Mahler volume of a centrally symmetric convex body is a dimensionless quantity that is associated with the body and is invariant under linear transformations. It is named after German English mathematician Kurt Mahler. It… …   Wikipedia

  • Mahler (homonymie) —  Pour l’article homophone, voir Maler.  Cette page d’homonymie répertorie des personnes (réelles ou fictives) partageant un même patronyme. Mahler (homonymie) est un nom de famille d origine germanique notamment porté par : Alma… …   Wikipédia en Français

  • Mahler measure — In mathematics, the Mahler measure M(p) of a polynomial p is Here p is assumed complex valued and is the Lτ norm of p (although this is not a true norm for values of τ < 1). It can be shown that if …   Wikipedia

  • Mahler's compactness theorem — In mathematics, Mahler s compactness theorem, proved by Kurt Mahler (1946), is a foundational result on lattices in Euclidean space, characterising sets of lattices that are bounded in a certain definite sense. Looked at another way, it… …   Wikipedia

  • Mahler's theorem — Not to be confused with Mahler s compactness theorem. In mathematics, Mahler s theorem, introduced by Kurt Mahler (1958), expresses continuous p adic functions in terms of polynomials. In any field, one has the following result. Let be the… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”