- Atomic de Broglie microscope
-
The atomic de Broglie microscope (also atomic nanoscope, neutral beam microscope, or scanning helium microscope when helium is used as the probing atom) is an imaging system which is expected to provide resolution at the nanometer scale.
Contents
History
The resolution of optical microscopes is limited to a few hundred nanometers by the wave properties of the light.
The idea of imaging with atoms instead of light is widely discussed in the literature since the past century.[2][3][4][5][6] Atom optics using neutral atoms instead of light could provide resolution as good as the electron microscope and be completely non-destructive, because short wavelengths on the order of a nanometer can be realized at low energy of the probing particles. "It follows that a helium microscope with nanometer resolution is possible. A helium atom microscope will be [a] unique non-destructive tool for reflection of transmission microscopy."[5]
Focusing of neutral atoms
Currently, the atom-optic imaging systems are not competitive with electron microscopy and various methods of near-field probe. The main problem in the optics of atomic beams for an imaging system is the focusing element. There is no material transparent to the beam of low-energy atoms. A Fresnel zone plate [6] and evanescent field lens [7] were suggested, as well as various atomic mirrors.[8][9][10] Such mirrors use the quantum reflection by Casimir–van der Waals potential tails.[11]
Ridged mirrors
Recently, the performance of solid-state atomic mirrors was greatly enhanced with so-called ridged mirrors (or Fresnel diffraction mirrors).[12][13][14][15][16] The specular reflection of an atomic wave from a ridged mirror can be interpreted as spatial Zeno effect.[14] At the appropriate ellipsoidal profile, such a mirror could be used for focusing of an atomic beam into a spot of some tens of nanometers;[1] the scattering of atoms from this spot brings the image of the object, like in the scanning confocal microscope, scanning electron microscope, or scanning probe microscopy.
The scheme shown in the picture is one possibility. A similar scheme is posted at the homepage of the University of Cambridge;[17] see an additional list of references there. Such an imaging system could also be realized with holographic, Fresnel diffraction, and evanescent wave systems. Some of such systems may become competitive with established methods of visualization and measuring of nano-objects. See the overview at Nanowiki (Nanotechnology).
See also
- Atom optics
- Atomic mirror
- Quantum reflection
- Ridged mirror
- Grazing angle
- Zeno effect
- Matter wave
References
- ^ a b Kouznetsov, D.; Oberst, H.; Neumann, A.; Kuznetsova, Y.; Shimizu, K.; Bisson, J. F.; Ueda, K.; Brueck, S. R. J. (2006). "Ridged atomic mirrors and atomic nanoscope". Journal of Physics B: Atomic, Molecular and Optical Physics 39: 1605. Bibcode 2006JPhB...39.1605K. doi:10.1088/0953-4075/39/7/005.
- ^ Poelsema, Bene (1989). Scattering of Thermal Energy Atoms from Disordered Surfaces. Berlin: Springer-Verlag. ISBN 0387503587.
- ^ Hulpke, Erika (1992). Helium Atom Scattering from Surfaces. Berlin: Springer-Verlag. ISBN 9783540546054.
- ^ Berkhout, J.; Luiten, O.; Setija, I.; Hijmans, T.; Mizusaki, T.; Walraven, J. (1989). "Quantum reflection: Focusing of hydrogen atoms with a concave mirror". Physical Review Letters 63: 1689. Bibcode 1989PhRvL..63.1689B. doi:10.1103/PhysRevLett.63.1689.
- ^ a b Holst, B.; Allison, W. (1997). Nature 390 (6657): 244. Bibcode 1997Natur.390..244H. doi:10.1038/36769.
- ^ a b Doak, R.; Grisenti, R.; Rehbein, S.; Schmahl, G.; Toennies, J.; W�ll, C. (1999). "Towards Realization of an Atomic de Broglie Microscope: Helium Atom Focusing Using Fresnel Zone Plates". Physical Review Letters 83: 4229. Bibcode 1999PhRvL..83.4229D. doi:10.1103/PhysRevLett.83.4229.
- ^ Balykin, V.; Klimov, V.; Letokhov, V. (2005). "Atom Nano-Optics". Optics and Photonics News 16: 44. Bibcode 2005OptPN..16...44B. doi:10.1364/OPN.16.3.000044.
- ^ Shimizu, F. (2001). "Specular Reflection of Very Slow Metastable Neon Atoms from a Solid Surface". Physical Review Letters 86: 987. Bibcode 2001PhRvL..86..987S. doi:10.1103/PhysRevLett.86.987.
- ^ Oberst, H.; Kasashima, S.; Balykin, V.; Shimizu, F. (2003). "Atomic-matter-wave scanner". Physical Review A 68. arXiv:physics/0210036. Bibcode 2003PhRvA..68a3606O. doi:10.1103/PhysRevA.68.013606.
- ^ Oberst, H.; Tashiro, Y.; Shimizu, K.; Shimizu, F. (2005). "Quantum reflection of He^{*} on silicon". Physical Review A 71. Bibcode 2005PhRvA..71e2901O. doi:10.1103/PhysRevA.71.052901.
- ^ Friedrich, H.; Jacoby, G.; Meister, C. G. (2002). "Quantum reflection by Casimir–van der Waals potential tails". Physical Review A 65. Bibcode 2002PhRvA..65c2902F. doi:10.1103/PhysRevA.65.032902.
- ^ Shimizu, F.; Fujita, J. I. (2002). "Giant Quantum Reflection of Neon Atoms from a Ridged Silicon Surface". Journal of the Physical Society of Japan 71: 5. arXiv:physics/0111115. Bibcode 2002JPSJ...71....5S. doi:10.1143/JPSJ.71.5.
- ^ Shimizu, F.; Fujita, J. I. (2002). "Reflection-Type Hologram for Atoms". Physical Review Letters 88. Bibcode 2002PhRvL..88l3201S. doi:10.1103/PhysRevLett.88.123201. PMID 11909457.
- ^ a b Kouznetsov, D.; Oberst, H. (2005). "Reflection of Waves from a Ridged Surface and the Zeno Effect". Optical Review 12: 363. Bibcode 2005OptRv..12..363K. doi:10.1007/s10043-005-0363-9.
- ^ Kouznetsov, D.; Oberst, H. (2005). "Scattering of atomic matter waves from ridged surfaces". Physical Review A 72. Bibcode 2005PhRvA..72a3617K. doi:10.1103/PhysRevA.72.013617.
- ^ Oberst, H.; Kouznetsov, D.; Shimizu, K.; Fujita, J. I.; Shimizu, F. (2005). "Fresnel Diffraction Mirror for an Atomic Wave". Physical Review Letters 94. Bibcode 2005PhRvL..94a3203O. doi:10.1103/PhysRevLett.94.013203.
- ^ Atom Optics and Helium Atom Microscopy. Cambridge University, http://www-sp.phy.cam.ac.uk/research/mirror.php3
Categories:
Wikimedia Foundation. 2010.