Atomic de Broglie microscope

Atomic de Broglie microscope
Fig.1. Proposal for the Helium microscope by.[1]

The atomic de Broglie microscope (also atomic nanoscope, neutral beam microscope, or scanning helium microscope when helium is used as the probing atom) is an imaging system which is expected to provide resolution at the nanometer scale.



The resolution of optical microscopes is limited to a few hundred nanometers by the wave properties of the light.

The idea of imaging with atoms instead of light is widely discussed in the literature since the past century.[2][3][4][5][6] Atom optics using neutral atoms instead of light could provide resolution as good as the electron microscope and be completely non-destructive, because short wavelengths on the order of a nanometer can be realized at low energy of the probing particles. "It follows that a helium microscope with nanometer resolution is possible. A helium atom microscope will be [a] unique non-destructive tool for reflection of transmission microscopy."[5]

Focusing of neutral atoms

Currently, the atom-optic imaging systems are not competitive with electron microscopy and various methods of near-field probe. The main problem in the optics of atomic beams for an imaging system is the focusing element. There is no material transparent to the beam of low-energy atoms. A Fresnel zone plate [6] and evanescent field lens [7] were suggested, as well as various atomic mirrors.[8][9][10] Such mirrors use the quantum reflection by Casimir–van der Waals potential tails.[11]

Ridged mirrors

Recently, the performance of solid-state atomic mirrors was greatly enhanced with so-called ridged mirrors (or Fresnel diffraction mirrors).[12][13][14][15][16] The specular reflection of an atomic wave from a ridged mirror can be interpreted as spatial Zeno effect.[14] At the appropriate ellipsoidal profile, such a mirror could be used for focusing of an atomic beam into a spot of some tens of nanometers;[1] the scattering of atoms from this spot brings the image of the object, like in the scanning confocal microscope, scanning electron microscope, or scanning probe microscopy.

The scheme shown in the picture is one possibility. A similar scheme is posted at the homepage of the University of Cambridge;[17] see an additional list of references there. Such an imaging system could also be realized with holographic, Fresnel diffraction, and evanescent wave systems. Some of such systems may become competitive with established methods of visualization and measuring of nano-objects. See the overview at Nanowiki (Nanotechnology).

See also


  1. ^ a b Kouznetsov, D.; Oberst, H.; Neumann, A.; Kuznetsova, Y.; Shimizu, K.; Bisson, J. F.; Ueda, K.; Brueck, S. R. J. (2006). "Ridged atomic mirrors and atomic nanoscope". Journal of Physics B: Atomic, Molecular and Optical Physics 39: 1605. Bibcode 2006JPhB...39.1605K. doi:10.1088/0953-4075/39/7/005.  edit
  2. ^ Poelsema, Bene (1989). Scattering of Thermal Energy Atoms from Disordered Surfaces. Berlin: Springer-Verlag. ISBN 0387503587. 
  3. ^ Hulpke, Erika (1992). Helium Atom Scattering from Surfaces. Berlin: Springer-Verlag. ISBN 9783540546054. 
  4. ^ Berkhout, J.; Luiten, O.; Setija, I.; Hijmans, T.; Mizusaki, T.; Walraven, J. (1989). "Quantum reflection: Focusing of hydrogen atoms with a concave mirror". Physical Review Letters 63: 1689. Bibcode 1989PhRvL..63.1689B. doi:10.1103/PhysRevLett.63.1689.  edit
  5. ^ a b Holst, B.; Allison, W. (1997). Nature 390 (6657): 244. Bibcode 1997Natur.390..244H. doi:10.1038/36769.  edit
  6. ^ a b Doak, R.; Grisenti, R.; Rehbein, S.; Schmahl, G.; Toennies, J.; W�ll, C. (1999). "Towards Realization of an Atomic de Broglie Microscope: Helium Atom Focusing Using Fresnel Zone Plates". Physical Review Letters 83: 4229. Bibcode 1999PhRvL..83.4229D. doi:10.1103/PhysRevLett.83.4229.  edit
  7. ^ Balykin, V.; Klimov, V.; Letokhov, V. (2005). "Atom Nano-Optics". Optics and Photonics News 16: 44. Bibcode 2005OptPN..16...44B. doi:10.1364/OPN.16.3.000044.  edit
  8. ^ Shimizu, F. (2001). "Specular Reflection of Very Slow Metastable Neon Atoms from a Solid Surface". Physical Review Letters 86: 987. Bibcode 2001PhRvL..86..987S. doi:10.1103/PhysRevLett.86.987.  edit
  9. ^ Oberst, H.; Kasashima, S.; Balykin, V.; Shimizu, F. (2003). "Atomic-matter-wave scanner". Physical Review A 68. arXiv:physics/0210036. Bibcode 2003PhRvA..68a3606O. doi:10.1103/PhysRevA.68.013606.  edit
  10. ^ Oberst, H.; Tashiro, Y.; Shimizu, K.; Shimizu, F. (2005). "Quantum reflection of He^{*} on silicon". Physical Review A 71. Bibcode 2005PhRvA..71e2901O. doi:10.1103/PhysRevA.71.052901.  edit
  11. ^ Friedrich, H.; Jacoby, G.; Meister, C. G. (2002). "Quantum reflection by Casimir–van der Waals potential tails". Physical Review A 65. Bibcode 2002PhRvA..65c2902F. doi:10.1103/PhysRevA.65.032902.  edit
  12. ^ Shimizu, F.; Fujita, J. I. (2002). "Giant Quantum Reflection of Neon Atoms from a Ridged Silicon Surface". Journal of the Physical Society of Japan 71: 5. arXiv:physics/0111115. Bibcode 2002JPSJ...71....5S. doi:10.1143/JPSJ.71.5.  edit
  13. ^ Shimizu, F.; Fujita, J. I. (2002). "Reflection-Type Hologram for Atoms". Physical Review Letters 88. Bibcode 2002PhRvL..88l3201S. doi:10.1103/PhysRevLett.88.123201. PMID 11909457.  edit
  14. ^ a b Kouznetsov, D.; Oberst, H. (2005). "Reflection of Waves from a Ridged Surface and the Zeno Effect". Optical Review 12: 363. Bibcode 2005OptRv..12..363K. doi:10.1007/s10043-005-0363-9.  edit
  15. ^ Kouznetsov, D.; Oberst, H. (2005). "Scattering of atomic matter waves from ridged surfaces". Physical Review A 72. Bibcode 2005PhRvA..72a3617K. doi:10.1103/PhysRevA.72.013617.  edit
  16. ^ Oberst, H.; Kouznetsov, D.; Shimizu, K.; Fujita, J. I.; Shimizu, F. (2005). "Fresnel Diffraction Mirror for an Atomic Wave". Physical Review Letters 94. Bibcode 2005PhRvL..94a3203O. doi:10.1103/PhysRevLett.94.013203.  edit
  17. ^ Atom Optics and Helium Atom Microscopy. Cambridge University,

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • De Broglie hypothesis — In physics, the de Broglie hypothesis (pronounced /brœj/, as French breuil, close to broy ) is the statement that all matter (any object) has a wave like nature (wave particle duality). The de Broglie relations show that the wavelength is… …   Wikipedia

  • microscope — /muy kreuh skohp /, n. 1. an optical instrument having a magnifying lens or a combination of lenses for inspecting objects too small to be seen or too small to be seen distinctly and in detail by the unaided eye. 2. (cap.) Astron. the… …   Universalium

  • Scanning Helium Ion Microscope — A Scanning Helium Ion Microscope (SHIM) is a new imaging technology based on a scanning helium ion beam. [ [ ntid=121 pg=1 Nanotechwire press release announcing new microscope, retrieved December 13, 2006] …   Wikipedia

  • Matter wave — This article is about the quantum mechanical concept of all matter having a duality model as a wave. For the ordinary type of wave propagating through material media, see Mechanical wave. In quantum mechanics, a matter wave or de Broglie wave (… …   Wikipedia

  • Atom optics — (or atomic optics) is the area of physics which deals with beams of cold, slowly moving neutral atoms, as a special case of a particle beam. Like an optical beam, the atomic beam may exhibit diffraction and interference, and can be focused with… …   Wikipedia

  • Interferometric microscopy — or Imaging interferometric microscopy is the concept of microscopy whichis related to holography, synthetic aperture imaging, and off axis dark field illumination techniques.Interferometric microscopy allows enhancement of resolution of optical… …   Wikipedia

  • Transmission electron microscopy — A TEM image of the polio virus. The polio virus is 30 nm in size.[1] Transmission electron microscopy (TEM) is a microscopy technique whereby a beam of electrons is transmitted through an ultra thin specimen, interacting with the specimen as it… …   Wikipedia

  • Electron — For other uses, see Electron (disambiguation). Electron Experiments with a Crookes tube first demonstrated the particle nature of electrons. In this illustration, the profile of the cross shaped target is projected against the tube face at right… …   Wikipedia

  • Électron — Traduction à relire Electron → …   Wikipédia en Français

  • light — light1 lightful, adj. lightfully, adv. /luyt/, n., adj., lighter, lightest, v., lighted or lit, lighting. n. 1. something that makes things visible or affords illumination: All colors depend on light. 2. Physics …   Universalium

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”