- Terahertz radiation
Electromagnetic wave s sent at terahertz frequencies, known as terahertz radiation, submillimeter radiation, terahertz waves, terahertz light, T-rays, T-light, T-lux and THz, are in the region of theelectromagnetic spectrum between 300gigahertz (3x1011 Hz) and 3terahertz (3x1012 Hz), corresponding to the submillimeterwavelength range between 1 millimeter (high-frequency edge of themicrowave band) and 100 micrometer (long-wavelength edge offar-infrared light ).Introduction
Like
infrared radiation ormicrowaves , these waves usually travel in line of sight. Terahertz radiation is non-ionizing submillimeter microwave radiation and shares with microwaves the capability to penetrate a wide variety of non-conducting materials. Terahertz radiation can pass throughclothing ,paper ,cardboard ,wood ,masonry ,plastic andceramic s. It can also penetratefog andcloud s, but cannot penetratemetal orwater . TheEarth's atmosphere is a strong absorber of terahertz radiation, so the range of terahertz radiation is quite short, limiting its usefulness for communications. In addition, producing and detecting coherent terahertz radiation was technically challenging until the 1990s.ources
Terahertz radiation is emitted as part of the
black body radiation from anything with temperatures greater than about 10kelvin . While this thermal emission is very weak, observations at these frequencies are important for characterizing the cold 10-20K dust in theinterstellar medium in the Milky Way galaxy, and in distant starburst galaxies. Telescopes operating in this band include theJames Clerk Maxwell Telescope , theCaltech Submillimeter Observatory and theSubmillimeter Array at theMauna Kea Observatory in Hawai'i, the BLAST balloon borne telescope, and theHeinrich Hertz Submillimeter Telescope at theMount Graham International Observatory in Arizona. Planned telescopes operating in the submillimeter include theAtacama Large Millimeter Array and theHerschel Space Observatory . The opacity of the Earth's atmosphere to submillimeter radiation restricts these observatories to very high altitude sites, or to space.As of 2004 the only viable sources of terahertz radiation were thegyrotron , thebackward wave oscillator ("BWO"), thefar infrared laser ("FIR laser"),quantum cascade laser , thefree electron laser ("FEL"),synchrotron light sources,photomixing sources, and single-cycle sources used inTerahertz time domain spectroscopy . The first images generated using terahertz radiation date from the 1960s; however, in 1995, images generated usingterahertz time-domain spectroscopy generated a great deal of interest, and sparked a rapid growth in the field of terahertz science and technology. This excitement, along with the associated coining of the term "T-rays", even showed up in a contemporary novel byTom Clancy .There have also been solid-state sources of millimeter and submillimeter waves for many years. AB Millimeter in Paris, for instance, produces a system that covers the entire range from 8 GHz to 1000 GHz with solid state sources and detectors. Nowadays, most time-domain work is done via ultrafast lasers.
In mid-2007, scientists at the U.S. Department of Energy's Argonne National Laboratory, along with collaborators in Turkey and Japan, announced the creation of a compact device that can lead to a portable, battery-operated sources of T-rays, or terahertz radiation. The group was led by Ulrich Welp of Argonne's Materials Science Division. [Science News: [http://www.sciencedaily.com/releases/2007/11/071126121732.htm New T-ray Source Could Improve Airport Security, Cancer Detection] , ScienceDaily (Nov. 27, 2007).] This new T-ray source uses high-temperature superconducting crystals grown at the University of Tsukuba in Japan. These crystals comprise stacks of
Josephson junction s that exhibit a unique electrical property: when an external voltage is applied, an alternating current will flow back and forth across the junctions at a frequency proportional to the strength of the voltage; this phenomenon is known as theJosephson effect . These alternating currents then produce electromagnetic fields whose frequency is tuned by the applied voltage. Even a small voltage – around two millivolts per junction – can induce frequencies in the terahertz range, according to Welp.In 2008 engineers at Harvard University announced they had built a room temperature semiconductor source of coherent Terahertz radiation. Until then sources had required cryogenic cooling, greatly limiting their use in everyday applications. [ [http://www.physorg.com/news130385859.html Engineers demonstrate first room-temperature semiconductor source of coherent Terahertz radiation] Phsorg.com. May 19, 2008. Accessed May 2008]
Theoretical and technological uses under development
*Medical imaging:
**Terahertz radiation is non-ionizing, and thus is not expected to damage tissues andDNA , unlikeX-rays . Some frequencies of terahertz radiation can penetrate several millimeters of tissue with low water content (e.g. fatty tissue) and reflect back. Terahertz radiation can also detect differences in water content anddensity of a tissue. Such methods could allow effective detection ofepithelial cancer with a safer and less invasive or painful system using imaging.
**Some frequencies of terahertz radiation can be used for3D imaging of teeth and may be more accurate and safer than conventional X-ray imaging indentistry .
*Security:
**Terahertz radiation can penetrate fabrics andplastics , so it can be used insurveillance , such as security screening, to uncover concealedweapon s on a person, remotely. This is of particular interest because many materials of interest, such as plastic explosives, have unique spectral "fingerprints" in the terahertz range. This offers the possibility to combine spectral identification with imaging. Passive detection of Terahertz signatures avoid the bodily privacy concerns of other detection by being targeted to a very specific range of materials and objects. [cite news |first= |last= |authorlink= |coauthors= |title=Camera 'looks' through clothing |url=http://news.bbc.co.uk/1/hi/technology/7287135.stm |work= |publisher=BBC News 24 |date=10 March 2008 |accessdate=2008-03-10 ]
*Scientific use and imaging:
**Spectroscopy in terahertz radiation could provide novel information inchemistry andbiochemistry .
**Recently developed methods of THz time-domain spectroscopy (THz TDS) and THztomography have been shown to be able to perform measurements on, and obtain images of, samples which are opaque in the visible and near-infrared regions of the spectrum. The utility of THz-TDS is limited when the sample is very thin, or has a lowabsorbance , since it is very difficult to distinguish changes in the THz pulse caused by the sample from those caused by long term fluctuations in the drivinglaser source orexperiment . However, THz-TDS produces radiation that is bothcoherent andbroadband , so such images can contain far more information than a conventional image formed with a single-frequency source.
**A primary use of submillimeter waves in physics is the study of condensed matter in high magnetic fields, since at high fields (over about 15 teslas), the Larmor frequencies are in the submillimeter band. This work is performed at many high-magnetic field laboratories around the world.
**Submillimetre astronomy .
**Terahertz radiation could let art historians see murals hidden beneath coats of plaster or paint in centuries-old building, without harming the artwork. [ [http://newswise.com/articles/view/537448/ Hidden Art Could be Revealed by New Terahertz Device] Newswise, Retrieved onSeptember 21 ,2008 .]
*Communication:
**Potential uses exist in high-altitudetelecommunication s, above altitudes where water vapor causes signal absorption:aircraft tosatellite , or satellite to satellite.
*Manufacturing:
**Many possible uses of terahertz sensing and imaging are proposed inmanufacturing ,quality control , and process monitoring. These generally exploit the traits ofplastic s and cardboard being transparent to terahertz radiation, making it possible to inspect packaged goods.Terahertz versus submillimeter waves
The terahertz band, covering the wavelength range between 0.1 and 1 mm, is identical to the submillimeter wavelength band. However, typically, the term "terahertz" is used more often in marketing in relation to generation and detection with pulsed lasers, as in
terahertz time domain spectroscopy , while the term "submillimeter" is used for generation and detection with microwave technology, such as harmonic multiplication.Fact|date=July 2007References and notes
* "Revealing the Invisible". Ian S. Osborne, "Science"
16 August 2002 ; 297: 1097.
* [http://www.jlab.org/FEL/terahertz/nature.pdf Article in "Nature"]14 November 2002 (local copy from the Jefferson Lab)
* [http://www.jlab.org/FEL/terahertz/nature2.pdf News and Views in "Nature"]14 November 2002 (local copy from the Jefferson Lab)
* [http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=RSINAK000071000001000186000001&idtype=cvips&gifs=Yes Instrumentation for millimeter-wave magnetoelectrodynamic investigations... Review of Scientific Instruments, 2000]Books on millimeter and submillimeter waves and RF optics
* [http://www.amazon.com/dp/0780334396/ Quasioptical systems: Gaussian beam quasioptical propagation and applications, Paul F. Goldsmith, IEEE Press]
* [http://www.amazon.com/dp/3540628606/ Millimeter wave spectroscopy of solids, edited by G. Grüner, Springer]
* [http://www.amazon.com/dp/0521017106/ Detection of light: from the ultraviolet to the submillimeter, George Rieke, Cambridge]
* [http://www.amazon.com/dp/1586030981/ Modern millimeter-wave technologies, Tasuku Teshirogi and Tsukasa Yoneyama, eds, IOS press]
* [http://www.amazon.com/dp/0890067112/ Optoelectronic techniques for microwave and millimeter-wave engineering William Robertson, Artech]ee also
*
Terahertz time domain spectroscopy
*Heterojunction bipolar transistor
*HEMT
*Picarin lens External links
* [http://www.aip.org/tip/INPHFA/vol-9/iss-4/p27.html Terahertz radiation: applications and sources] by Eric Mueller
* [http://www.livescience.com/technology/060728_t-rays.html Shadowy T-rays: Hunting Tumors and Exploring the Universe]
* [http://www.physik.uni-kl.de/768.html?L=1 Introduction to THz time-domain-spectroscopy and imaging]
* [http://physorg.com/news130385859.html Engineers demonstrate first room-temperature semiconductor source of coherent Terahertz radiation]
Wikimedia Foundation. 2010.