Erdős conjecture on arithmetic progressions
- Erdős conjecture on arithmetic progressions
Erdős' conjecture on arithmetic progressions, often incorrectly referred to as the Erdős–Turán conjecture, is a conjecture in additive combinatorics due to Paul Erdős. It states that if the sum of the reciprocals of the members of a set "A" of positive integers diverges, then "A" contains arbitrarily long arithmetic progressions.
Formally, if
:
then "A" contains arithmetic progressions of any given length.
If true, the theorem would generalize Szemerédi's theorem.
Erdős offered a prize of $3000 for a proof of this conjecture. [cite journal |last=Bollobás |first=Béla |authorlink=Béla Bollobás |year=1988 |month=March |title=To Prove and Conjecture: Paul Erdős and His Mathematics |journal=American Mathematical Monthly |volume=105 |issue=3 |pages=233]
The Green-Tao theorem on arithmetic progressions in the primes is a special case of this conjecture.
References
*P. Erdős: Résultats et problèmes en théorie de nombres, "Séminaire Delange-Pisot-Poitou (14e année: 1972/1973), Théorie des nombres", Fasc 2., Exp. No. 24, pp. 7,
*P. Erdős: Problems in number theory and combinatorics, Proc. Sixth Manitoba Conf. on Num. Math., "Congress Numer." XVIII(1977), 35-58.
*P. Erdős: On the combinatorial problems which I would most like to see solved, "Combinatorica", 1(1981), 28.
Wikimedia Foundation.
2010.
Look at other dictionaries:
Erdős conjecture — The prolific mathematician Paul Erdős and his various collaborators made many famous mathematical conjectures, over a wide field of subjects.Some of these are the following: * The Cameron–Erdős conjecture on sum free sets of integers, solved by… … Wikipedia
Conjecture d'Erdős sur les progressions arithmétiques — En mathématiques, plus précisément en combinatoire additive (en), la conjecture d’Erdős sur les progressions arithmétiques peut s’énoncer de la manière suivante. Soit une suite d’entiers strictement positifs ; si la série diverge, alors … Wikipédia en Français
Problems involving arithmetic progressions — are of interest in number theory,cite journal|author=Samuel S. Wagstaff, Jr.|authorlink= url= title=Some Questions About Arithmetic Progressions journal=The American Mathematical Monthly volume=86|issue=7|pages=579–582|year=1979… … Wikipedia
Paul Erdős — at a student seminar in Budapest (fall 1992) Born 26 March 1913 … Wikipedia
List of things named after Paul Erdős — The following were named after Paul Erdős:* Erdős number * Erdős cardinal * Erdős conjecture a list of numerous conjectures named after Erdős ** Erdős conjecture on arithmetic progressions ** Cameron–Erdős conjecture ** Erdős–Burr conjecture **… … Wikipedia
Twin prime conjecture — The twin prime conjecture is a famous unsolved problem in number theory that involves prime numbers. It states:: There are infinitely many primes p such that p + 2 is also prime. Such a pair of prime numbers is called a prime twin. The conjecture … Wikipedia
List of mathematics articles (E) — NOTOC E E₇ E (mathematical constant) E function E₈ lattice E₈ manifold E∞ operad E7½ E8 investigation tool Earley parser Early stopping Earnshaw s theorem Earth mover s distance East Journal on Approximations Eastern Arabic numerals Easton s… … Wikipedia
List of unsolved problems in mathematics — This article lists some unsolved problems in mathematics. See individual articles for details and sources. Contents 1 Millennium Prize Problems 2 Other still unsolved problems 2.1 Additive number theory … Wikipedia
Green–Tao theorem — In mathematics, the Green–Tao theorem, proved by Ben Green and Terence Tao in 2004, [Ben Green and Terence Tao, [http://arxiv.org/abs/math.NT/0404188 The primes contain arbitrarily long arithmetic progressions] ,8 Apr 2004.] states that the… … Wikipedia
Открытые проблемы в теории чисел — Теория чисел это раздел математики, занимающийся преимущественно изучением натуральных и целых чисел и их свойств, часто с привлечением методов математического анализа и других разделов математики. Теория чисел содержит множество проблем,… … Википедия