Lebesgue's density theorem

Lebesgue's density theorem

In mathematics, Lebesgue's density theorem states that for any Lebesgue measurable set A, the "density" of A is 1 at almost every point in A. Intuitively, this means that the "edge" of A, the set of points in A whose "neighborhood" is partially in A and partially outside of A, is negligible.

Let μ be the Lebesgue measure on the Euclidean space Rn and A be a Lebesgue measurable subset of Rn. Define the approximate density of A in a ε-neighborhood of a point x in Rn as

 d_\varepsilon(x)=\frac{\mu(A\cap B_\varepsilon(x))}{\mu(B_\varepsilon(x))}

where Bε denotes the closed ball of radius ε centered at x.

Lebesgue's density theorem asserts that for almost every point x of A the density

 d(x)=\lim_{\varepsilon\to 0} d_{\varepsilon}(x)

exists and is equal to 1.

In other words, for every measurable set A, the density of A is 0 or 1 almost everywhere in Rn.[1] However, it is a curious fact that if μ(A) > 0 and μ(Rn \ A) > 0, then there are always points of Rn where the density is neither 0 nor 1.

For example, given a square in the plane, the density at every point inside the square is 1, on the edges is 1/2, and at the corners is 1/4. The set of points in the plane at which the density is neither 0 nor 1 is non-empty (the square boundary), but it is negligible.

The Lebesgue density theorem is a particular case of the Lebesgue differentiation theorem.

See also

References

  1. ^ Pertti, Mattila (1995). Geometry of Sets and Measures in Euclidean Spaces: Fractals and rectifiability, Corollary 2.14(1). Cambridge University Press, Cambridge. ISBN 0521655951.
  • Hallard T. Croft. Three lattice-point problems of Steinhaus. Quart. J. Math. Oxford (2), 33:71-83, 1982.

This article incorporates material from Lebesgue density theorem on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Density theorem — In mathemtics, density theorem may refer to Density conjecture for Kleinian groups Chebotarev s density theorem in algebraic number theory Jacobson density theorem in algebra Kaplansky density theorem in algebra Lebesgue s density theorem This… …   Wikipedia

  • Density (disambiguation) — Density and dense usually refer to a measure of how much of some entity is within a fixed amount of space. Types of density include: In physics, density of mass: Density, mass per volume Area density or surface density, mass over a (two… …   Wikipedia

  • Lebesgue measure — In mathematics, the Lebesgue measure, named after Henri Lebesgue, is the standard way of assigning a length, area or volume to subsets of Euclidean space. It is used throughout real analysis, in particular to define Lebesgue integration. Sets… …   Wikipedia

  • Lebesgue differentiation theorem — In mathematics, the Lebesgue differentiation theorem is a theorem of real analysis.tatementFor a Lebesgue integrable real valued function f, the indefinite integral is a set function which maps a measurable set A to the Lebesgue integral of f… …   Wikipedia

  • Théorème de Lebesgue — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. En mathématiques, plusieurs théorèmes portent, au moins en partie, le nom de Henri Léon Lebesgue : Théorèmes de convergence monotone et dominée de… …   Wikipédia en Français

  • Density on a manifold — In mathematics, and specifically differential geometry, a density is a spatially varying quantity on a differentiable manifold which can be integrated in an intrinsic manner. Abstractly, a density is a section of a certain trivial line bundle,… …   Wikipedia

  • Liouville's theorem (Hamiltonian) — In physics, Liouville s theorem, named after the French mathematician Joseph Liouville, is a key theorem in classical statistical and Hamiltonian mechanics. It asserts that the phase space distribution function is constant along the trajectories… …   Wikipedia

  • Radon–Nikodym theorem — In mathematics, the Radon–Nikodym theorem is a result in functional analysis that states that, given a measurable space ( X , Sigma;), if a sigma finite measure nu; on ( X , Sigma;) is absolutely continuous with respect to a sigma finite measure… …   Wikipedia

  • List of theorems — This is a list of theorems, by Wikipedia page. See also *list of fundamental theorems *list of lemmas *list of conjectures *list of inequalities *list of mathematical proofs *list of misnamed theorems *Existence theorem *Classification of finite… …   Wikipedia

  • List of mathematics articles (L) — NOTOC L L (complexity) L BFGS L² cohomology L function L game L notation L system L theory L Analyse des Infiniment Petits pour l Intelligence des Lignes Courbes L Hôpital s rule L(R) La Géométrie Labeled graph Labelled enumeration theorem Lack… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”