- Selenoprotein
A selenoprotein is any
protein that includes aselenocysteine residue. Selenoproteins exist in all major forms of life,eukaryote ,bacteria andarchaea . Amongeukaryote s, selenoproteins appear to be common inanimal s, but rare or absent in other phyla (one has been identified in the greenalga "Chlamydomonas ", but none in otherplant s or infungi ). Amongbacteria andarchaea , selenoproteins are only present in some lineages, while they are completely absent in many other phylogenetic groups. These observations have recently been confirmed by whole genome analysis, which shows the presence or absence of selenoprotein genes and accessory genes for the synthesis of selenoproteins in the respective organism.Besides the
selenocysteine -containing selenoproteins, there are also some selenoproteins known from bacterial species, which haveselenium bound non-covalently. Most of these proteins are thought to contain a selenide-ligand to amolybdopterin cofactor at their active sites (e. g.nicotinate dehydrogenase of "Eubacterium barkeri ", orxanthine dehydrogenase s). Selenium is also specifically incorporated into modified bases of sometRNA s (as 2-seleno-5-methylaminomethyl-uridine).In addition, selenium occurs in proteins as unspecifically incorporated
selenomethionine , which replaces methionine residues. Proteins containing such unspecifically incorporatedselenomethionine residues are not regarded as selenoproteins. However, replacement of allmethionine s byselenomethionine s is a widely used recent technique in solving the phase problem during X-ray crystallographic structure determination of many proteins (MAD-phasing ). While the exchange ofmethionine s byselenomethionine s appears to be tolerated (at least in bacterial cells), unspecific incorporation ofselenocysteine in lieu ofcysteine seems to be highly toxic. This may be one reason for the existence of a rather complicated pathway ofselenocysteine biosynthesis and specific incorporation into selenoproteins, which avoids the occurrence of the free amino acid as intermediate. Thus, even if aselenocysteine -containing selenoprotein is taken up in the diet and used as selenium-source, the amino acid has to be degraded prior to synthesising a newselenocysteine for incorporation into a selenoprotein.Selenium is a vital nutrient inanimal s andhumans . About 25 differentselenocysteine -containing selenoproteins have so far been observed in human cells and tissues. Since lack of selenium deprives the cell's ability to synthesize selenoproteins, many health effects of low selenium intake are believed to be caused by the lack of on or more specific selenoproteins. In fact, 3 selenoproteins, TR1, TR3 and GPx4, have been shown to be essential in mice knockout experiments. On the other side, too much selenium in the diet causes toxic effects and leads toselenium poisoning . The threshold between essential and toxic concentrations of this element is rather narrow (the factor is in the range of 10-100).References
*
*
*
Wikimedia Foundation. 2010.