- Pseudo-octave
A pseudo-octaveFact|date=June 2007, pseudooctave"Interview with Max Mathews", p.21. Author(s): C. Roads and Max Mathews. Source: "Computer Music Journal", Vol. 4, No. 4, (Winter, 1980), pp. 15-22. Published by: The MIT Press.] , or paradoxical octave ["The Paradoxes of Octave Identities", p.213. Author(s): Jenő Keuler. Source: "Studia Musicologica Academiae Scientiarum Hungaricae", T. 40, Fasc. 1/3, (1999), pp. 211-224. Published by: Akadémiai Kiadó.] in music is an interval whose
frequency ratio is not 2:1 (2.3:1 or 1.9:1, for example), that of theoctave , but is perceived or treated as equivalent to this ratio, and whose pitches are considered equivalent to each other as withoctave equivalency . When used as a basis for anequal temperament , the pseudo-octave may also be called the Interval of Equivalence (IoE), the Repeat Ratio, and the nonoctaveFact|date=August 2008.tretched octave
The stretched octave, for example 2.01:1, sounds out of tune when played with true
harmonic overtones , but in tune when played with tones whose overtones are stretched equivalently.In piano tuning, stretched octaves are commonly encountered, where the
inharmonicity caused by string thickness and tension makes it necessary to widen every interval very slightly.The octaves of
Bali nesegamelan s are never tuned 2:1, but instead are stretched or compressed in a consistent manner throughout the range of each individual gamelan, due to the physical characteristics of their instruments. Another example is the tritave Audio|Tritave on C clarinet.mid|play on clarinets of theBohlen-Pierce scale .Stretched octaves are caused by the physics of
standing wave s in a stretched wire. The pitch of eachovertone produced by a piano string is determined by the ratio of the string'srestoring force (expressed as aspring constant ), divided by itsmass per unitlength .In an ideal piano string, the only restoring force would be due to the
tension in the string. In practice, piano strings are made from high-carbonsteel , which is stiff. The stiffness adds an extra restoring force to each string; the amount of this extra force depends on the amount of bend being induced in the string. Highernormal mode s bend the string more, inducing more stiffness-related force and sharpening the pitch of the resulting overtone.Octave stretching is less apparent on large pianos which have longer strings and hence less curvature for a given displacement; that is one reason why orchestras go to the expense of using very long concert grand pianos rather than shorter, less expensive baby grand, upright, or spinet pianos. (The other reason is that long strings under high tension can store more acoustic
energy than can short strings, giving larger instruments more volume and better sustain than similar, smaller instruments).See also
*
Stretched tuning
*Mel scale
*Electronic tuner ources
External links
* [http://billbremmer.com/articles Octave Types and Distribution]
Wikimedia Foundation. 2010.