Rotation number

Rotation number
This article is about the rotation number, which is sometimes called the map winding number or simply winding number. There is another meaning for winding number, which appears in complex analysis.

In mathematics, the rotation number is an invariant of homeomorphisms of the circle. It was first defined by Henri Poincaré in 1885, in relation to the precession of the perihelion of a planetary orbit. Poincaré later proved a theorem characterizing the existence of periodic orbits in terms of rationality of the rotation number.

Contents

Definition

Suppose that f: S1S1 is an orientation preserving homeomorphism of the circle S1 = R/Z. Then f may be lifted to a homeomorphism F: RR of the real line, satisfying

F(x + m) = F(x) + m

for every real number x and every integer m.

The rotation number of f is defined in terms of the iterates of F:

\omega(f)=\lim_{n\to\infty} \frac{F^n(x)-x}{n}.

Henri Poincaré proved that the limit exists and is independent of the choice of the starting point x. The lift F is unique modulo integers, therefore the rotation number is a well-defined element of R/Z. Intuitively, it measures the average rotation angle along the orbits of f.

Example

If f is a rotation by θ, so that

F(x) = x + θ,

then its rotation number is θ (cf Irrational rotation).

Properties

The rotation number is invariant under topological conjugacy, and even topological semiconjugacy: if f and g are two homeomorphisms of the circle and

 h\circ f = g\circ h

for a continuous map h of the circle into itself (not necessarily homeomorphic) then f and g have the same rotation numbers. It was used by Poincaré and Arnaud Denjoy for topological classification of homeomorphisms of the circle. There are two distinct possibilities.

  • The rotation number of f is a rational number p/q (in the lowest terms). Then f has a periodic orbit, every periodic orbit has period q, and the order of the points on each such orbit coincides with the order of the points for a rotation by p/q. Moreover, every forward orbit of f converges to a periodic orbit. The same is true for backward orbits, corresponding to iterations of f−1, but the limiting periodic orbits in forward and backward directions may be different.
  • The rotation number of f is an irrational number θ. Then f has no periodic orbits (this follows immediately by considering a periodic point x of f). There are two subcases.
  1. There exists a dense orbit. In this case f is topologically conjugate to the irrational rotation by the angle θ and all orbits are dense. Denjoy proved that this possibility is always realized when f is twice continuously differentiable.
  2. There exists a Cantor set C invariant under f. Then C is a unique minimal set and the orbits of all points both in forward and backward direction converge to C. In this case, f is semiconjugate to the irrational rotation by θ, and the semiconjugating map h of degree 1 is constant on components of the complement of C.

Another important property of the rotation number is that it is continuous when viewed as a map from the group of homeomorphisms of the circle into the circle.

See also

References

  • M.R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. Math. IHES, 49 (1979) pp. 5–234

Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Rotation (mathematics) — Rotation of an object in two dimensions around a point O. In geometry and linear algebra, a rotation is a transformation in a plane or in space that describes the motion of a rigid body around a fixed point. A rotation is different from a… …   Wikipedia

  • Rotation (pool) — Rotation, sometimes called rotation pool or 61, is a pocket billiards (pool) game, requiring a standard pool table, Cuegloss|Cue ball|cue ball and triangular rack of fifteen pool balls, in which the lowest numbered Cuegloss|Object ball|object… …   Wikipedia

  • Rotation of ammunition — is a term used with reference to guns. Projectiles intended for R.M.L. (rifled muzzle loading) guns were at first fitted with a number of gun metal studs arranged around them in a spiral manner corresponding to the twist of rifling. This was… …   Wikipedia

  • Rotation matrix — In linear algebra, a rotation matrix is a matrix that is used to perform a rotation in Euclidean space. For example the matrix rotates points in the xy Cartesian plane counterclockwise through an angle θ about the origin of the Cartesian… …   Wikipedia

  • Rotation around a fixed axis — Rotational motion can occur around more than one axis at once, and can involve phenomena such as wobbling and precession. Rotation around a fixed axis is a special case of rotational motion, which does not involve those phenomena. The kinematics… …   Wikipedia

  • Rotation system — In combinatorial mathematics, rotation systems encode embeddings of graphs onto orientable surfaces, by describing the circular ordering of a graph s edges around each vertex.A more formal definition of a rotation system involves pairs of… …   Wikipedia

  • Rotation representation (mathematics) — In geometry a rotation representation expresses the orientation of an object (or coordinate frame) relative to a coordinate reference frame. This concept extends to classical mechanics where rotational (or angular) kinematics is the science of… …   Wikipedia

  • Number Ones (video) — This article is about the Michael Jackson video. For the Mariah Carey video, see Number 1 s (video). Number Ones Video by Michael Jackson …   Wikipedia

  • rotation — rotational, adj. /roh tay sheuhn/, n. 1. the act of rotating; a turning around as on an axis. 2. Astron. a. the movement or path of the earth or a heavenly body turning on its axis. b. one complete turn of such a body. 3. regularly recurring… …   Universalium

  • rotation axis — noun : a simple axis of symmetry in a crystal about which the whole crystal configuration is brought into coincidence with its original aspect by a rotation of one half, one third, one fourth, or one sixth of a turn about the axis * * * Crystall …   Useful english dictionary

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”