- Hume's principle
Hume's Principle, or "HP"—the terms were coined by
George Boolos —says that the number of "F"s is equal to the number of "G"s if there is aone-to-one correspondence (abijection ) between the "F"s and the "G"s. HP can be stated formally in systems ofsecond-order logic .HP plays a central role in
Gottlob Frege 's philosophy of mathematics. Frege shows that HP and suitable definitions of arithmetical notions entail all axioms of what we now callsecond-order arithmetic . This result is known asFrege's theorem , which is the foundation for a philosophy of mathematics known as neo-logicism.Origins
Hume's Principle appears in Frege's "Foundations of Arithmetic", which quotes from Part III of Book I of
David Hume 's "A Treatise of Human Nature ". Hume there sets out seven fundamental relations between ideas. Concerning one of these, proportion inquantity ornumber , Hume argues that our reasoning about proportion in quantity, as represented bygeometry , can never achieve "perfect precision and exactness", since its principles are derived from sense-appearance. He contrasts this with reasoning about number orarithmetic , in which such a precision "can" be attained:Algebra and arithmetic [are] the only sciences, in which we can carry on a chain of reasoning to any degree of intricacy, and yet preserve a perfect exactness and certainty. We are possessed of a precise standard, by which we can judge of the equality and proportion of numbers; and according as they correspond or not to that standard, we determine their relations, without any possibility of error. "When two numbers are so combined, as that the one has always a unit answering to every unit of the other, we pronounce them equal"; and it is for want of such a standard of equality in [spatial] extension, that geometry can scarce be esteemed a perfect and infallible science. (I. III. I.)
Note Hume's use of the word "
number " in the ancient sense, to mean a set or collection of things rather than the common modern notion of "positive integer". The ancient Greek notion of number ("arithmos") is of a finite plurality composed of units. SeeAristotle , "Metaphysics", 1020a14 andEuclid , "Elements", Book VII, Definition 1 and 2. The contrast between the old and modern conception of number is discussed in detail in Mayberry (2000). The credit Frege tries to give to Hume is therefore probably not deserved, and Hume certainly would have rejected at least some of the consequences Frege draws from HP, in particular, the consequence that there are infinite numbers.Influence on set theory
The principle that
cardinal number was to be characterized in terms ofone-to-one correspondence had previously been used to great effect byGeorg Cantor , whose writings Frege knew. The suggestion has therefore been made that Hume's Principle ought better be called "Cantor's Principle". But Frege criticized Cantor on the ground that Cantor definescardinal number s in terms ofordinal number s, whereas Frege wanted to give a characterization of cardinals that was independent of the ordinals. Cantor's point of view, however, is the one embedded in contemporary theories of transfinite numbers, as developed in axiomaticset theory .References
*Anderson, D., and
Edward Zalta (2004) "Frege, Boolos, and Logical Objects," "Journal of Philosophical Logic 33": 1-26.
*George Boolos , 1998. "Logic, Logic, and Logic". Harvard Univ. Press. Especially section II, "Frege Studies."
*Burgess, John, 2005. "Fixing Frege". Princeton Univ. Press.
*Gottlob Frege , "Foundations of Arithmetic".
*David Hume , . "A Treatise of Human Nature ".
* Mayberry, John P., 2000. "The Foundations of Mathematics in the Theory of Sets". Cambridge. [http://www.maths.bris.ac.uk/~majpm/list.html Online excerpts.]External links
*
Stanford Encyclopedia of Philosophy : " [http://plato.stanford.edu/entries/frege-logic/ Frege's Logic, Theorem, and Foundations for Arithmetic] " -- byEdward Zalta .
* " [http://www.st-andrews.ac.uk/~arche/pages/projects/mathsproject.html The Logical and Metaphysical Foundations of Classical Mathematics,] "
* [http://www.st-andrews.ac.uk/~arche/pages/home.html Arche: The Centre for Philosophy of Logic, Language, Mathematics and Mind at St. Andrew's University.]
Wikimedia Foundation. 2010.