- Waveguide (acoustics)
: "This page is about waveguides for acoustics and sound, for other types of waveguide, see
Waveguide "An acoustic waveguide is a physical structure for guiding
sound wave s.Examples
One example might be a
speaking tube used aboard ships for communication between decks.Other examples include the rear passage in a transmission lineloudspeaker enclosure, or the human or animalear canal or a device like astethoscope . The term also applies to guided waves in solids.A duct for sound propagation also behaves like a
transmission line (e.g. air conditioning duct, car muffler, ...). The duct contains some medium, such asair , that supports sound propagation. Its length is normally of a similar order than thewavelength s of the sound it will be used with, but the dimensions of its cross section are normally smaller than one quarter of a wavelength. Sound is introduced at one end of the tube by forcing thepressure across the whole cross-section to vary with time. Aplane wave will travel down the line at thespeed of sound . When the wave reaches the end of the transmission line, behaviour depends on what is present at the end of the line. There are three possible scenarios:A low impedance load (e.g. leaving the end open in free air) will cause a reflected wave in which the sign of the pressure variation reverses, but the direction of the pressure wave remains the same.
A load that matches the characteristic impedance (defined below) will completely absorb the wave and the
energy associated with it. Noreflection will occur.A high impedance load (e.g. by plugging the end of the line) will cause a reflected wave in which the direction of the pressure wave is reversed but the sign of the pressure remains the same.
Since a transmission line behaves like a four terminal model, one cannot really define or measure the impedance of a transmission line component. One can however measure its input or output impedance. It depends on the cross-sectional area and length of the line, the sound frequency, as well as the characteristic impedance of the sound propagating medium within the duct. Only in the exceptional case of a closed end tube (to be compared with electrical short circuit), the input impedance could be regarded as a component impedance.
Where a transmission line of finite length is mismatched at both ends, there is the potential for a wave to bounce back and forth many times until it is absorbed. This phenomenon is a kind of
resonance and will tend to attenuate any signal fed into the line.When this resonance effect is combined with some sort of active
feedback mechanism and power input, it is possible to set up anoscillation which can be used to generate periodic acoustic signals such as musical notes (e.g. in an organ pipe).The application of transmission line theory is however seldom used in
acoustics . An equivalent four terminal model which splits the downstream and upstream waves is used. This eases the introduction of physically measurable acoustic characteristics,reflection coefficient s, material constants of insulation material, the influence of air velocity on wavelength (Mach number), etc. This approach also circumvents unpractical theoretical concepts, such as acoustic impedance of a tube, which is not measurable because of its inherent interaction with the sound source and the load of the acoustic component.
Wikimedia Foundation. 2010.