ImageJ

ImageJ
ImageJ
ImageJ
ImageJScreenshot.png
Screenshot of ImageJ
Developer(s) Wayne Rasband (NIH)
Stable release 1.45s / October 29, 2011; 24 days ago (2011-10-29)
Operating system Any (Java-based)
Type Image processing
License Public Domain
Website http://rsb.info.nih.gov/ij/

ImageJ is a public domain, Java-based image processing program developed at the National Institutes of Health.[1] ImageJ was designed with an open architecture that provides extensibility via Java plugins and recordable macros.[2] Custom acquisition, analysis and processing plugins can be developed using ImageJ's built-in editor and a Java compiler. User-written plugins make it possible to solve many image processing and analysis problems, from three-dimensional live-cell imaging,[3] to radiological image processing,[4] multiple imaging system data comparisons[5] to automated hematology systems.[6] ImageJ's plugin architecture and built in development environment has made it a popular platform for teaching image processing.[7][8]

ImageJ can be run as an online applet, a downloadable application, or on any computer with a Java 5 or later virtual machine. Downloadable distributions are available for Microsoft Windows, Mac OS, Mac OS X, Linux, and the Sharp Zaurus PDA. The source code for ImageJ is freely available.[9]

The project developer, Wayne Rasband, is at the Research Services Branch of the National Institute of Mental Health.

Contents

Features

ImageJ can display, edit, analyze, process, save, and print 8-bit, 16-bit and 32-bit images. It can read many image formats including TIFF, PNG, GIF, JPEG, BMP, DICOM, FITS, as well as raw formats. ImageJ supports image stacks, a series of images that share a single window, and it is multithreaded, so time-consuming operations can be performed in parallel on multi-CPU hardware. ImageJ can calculate area and pixel value statistics of user-defined selections and intensity thresholded objects. It can measure distances and angles. It can create density histograms and line profile plots. It supports standard image processing functions such as logical and arithmetical operations between images, contrast manipulation, convolution, Fourier analysis, sharpening, smoothing, edge detection and median filtering. It does geometric transformations such as scaling, rotation and flips. The program supports any number of images simultaneously, limited only by available memory.

History

Prior to the release of ImageJ in 1997, a similar freeware image analysis program known as NIH Image had been developed for Macintosh computers running pre-Mac OS X operating systems. Further development of this code continues in the form of Image SXM, a variant tailored for physical research of scanning microscope images. A Windows version – ported by Scion Corporation, so called Scion Image for Windows – was also developed. Both versions are still available.[10]

See also

References

  1. ^ Collins TJ (July 2007). "ImageJ for microscopy". BioTechniques 43 (1 Suppl): 25–30. doi:10.2144/000112517. PMID 17936939. 
  2. ^ Girish V, Vijayalakshmi A (2004). "Affordable image analysis using NIH Image/ImageJ". Indian J Cancer 41 (1): 47. PMID 15105580. http://www.bioline.org.br/request?cn04009. 
  3. ^ Eliceiri K, Rueden C (2005). "Tools for visualizing multidimensional images from living specimens". Photochem Photobiol 81 (5): 1116–22. doi:10.1562/2004-11-22-IR-377. PMID 15807634. 
  4. ^ Barboriak D, Padua A, York G, Macfall J (2005). "Creation of DICOM—Aware Applications Using ImageJ". J Digit Imaging 18 (2): 91–9. doi:10.1007/s10278-004-1879-4. PMC 3046706. PMID 15827831. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3046706. 
  5. ^ Rajwa B, McNally H, Varadharajan P, Sturgis J, Robinson J (2004). "AFM/CLSM data visualization and comparison using an open-source toolkit". Microsc Res Tech 64 (2): 176–84. doi:10.1002/jemt.20067. PMID 15352089. 
  6. ^ Gering E, Atkinson C (2004). "A rapid method for counting nucleated erythrocytes on stained blood smears by digital image analysis". J Parasitol 90 (4): 879–81. doi:10.1645/GE-222R. PMID 15357090. 
  7. ^ Burger W, Burge M (2007). Digital Image Processing: An Algorithmic Approach Using Java. Springer. ISBN 1846283795. http://www.imagingbook.com/. 
  8. ^ Dougherty, G (2009). Digital Image Processing for Medical Applications. Cambridge University Press. ISBN 9780521860857. http://www.cambridge.org/9780521860857. 
  9. ^ Rueden CT, Eliceiri KW (July 2007). "Visualization approaches for multidimensional biological image data". BioTechniques 43 (1 Suppl): 31, 33–6. doi:10.2144/000112511. PMID 17936940. 
  10. ^ "NIH Image: About". http://rsbweb.nih.gov/nih-image/about.html. Retrieved 2008-11-18. 

External links

Distributions

  • ImageJ for Microscopy - from the McMaster Biophotonics Facility
  • Fiji (Fiji is Just ImageJ): An ImageJ bundled distribution; many scripting languages supported (see Scripting). Fiji focuses on image registration, stitching, segmentation and 3D visualization.

Plug-ins

NIH Image


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • ImageJ — ImageJ …   Википедия

  • ImageJ — Captura de ImageJ D …   Wikipedia Español

  • ImageJ — ImageJ …   Wikipédia en Français

  • Imagej — est un logiciel de traitement et d analyse d images. Le J indique que le programme a été écrit en Java, ce qui en fait un logiciel utilisable sur différents systèmes d exploitation. ImageJ peut être téléchargé gratuitement sur le site du National …   Wikipédia en Français

  • ImageJ — Basisdaten Entwickler Wayne Rasband (NIH) Aktuelle Version …   Deutsch Wikipedia

  • Image J — ImageJ ImageJ est un logiciel de traitement et d analyse d images. Le J indique que le programme a été écrit en Java, ce qui en fait un logiciel utilisable sur différents systèmes d exploitation. ImageJ peut être téléchargé gratuitement sur le… …   Wikipédia en Français

  • Animated Portable Network Graphics — Información general Extensión de archivo .png .apng Lanzamiento inicial …   Wikipedia Español

  • Colocalization — In fluorescence microscopy, colocalization refers to observation of the spatial overlap between two (or more) different fluorescent labels, each having a separate emission wavelength, to see if the different targets are located in the same area… …   Wikipedia

  • Monogenes Signal — Das monogene Signal (aus dem Englischen von monogenic signal) ist eine Verallgemeinerung des analytischen Signals für d dimensionale Signale, welches auf der Riesztransformation (s. unten) basiert. Für d = 1 entspricht das monogene Signal dem… …   Deutsch Wikipedia

  • SURF — (englisch, Speeded Up Robust Features, frei übersetzt: „Beschleunigte, robuste Merkmale“) ist ein Algorithmus von Herbert Bay et al. zur schnellen und robusten Erkennung von Bildmerkmalen für maschinelles Sehen. SURF ersetzt die in SIFT… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”