Negation theory

Negation theory

Negation Theory is a theory of how a policy debate round should be decided which dictates that the negative need only negate the affirmative instead of having to negate the resolution.

Overview

Negation Theory says that the Negative has the right to negate the Affirmative in whatever way they see fit. Thus, if the Negative can prove in multiple ways, no matter how contradictory they are, that the affirmative plan is a bad idea, then, the judge should vote negative. The only exception is if the affirmative can explicitly grant two arguments made by the negative that directly "double turn," explained below.

For example, if the Affirmative's plan says that the United States Federal Government should stop disallowing immigrants entry into the country because they have HIV, Negation Theory says that the Negative can say both of these things (also examples):
* Increased immigration risks increased terrorism
* The Aff has a double standard by only allowing HIV-positive immigrants in, and should also allow TB-positive immigrants in

Even though these two arguments completely disagree with each other (Letting TB-positive immigrants into the country would increase immigration, thus increasing terrorism, according to the arguments), the Negative can present them both, because, under this theory, it isn't the Negative's job to present a single argument so as not to contradict themselves, but rather to explain how the Affirmative's plan is not the best choice. The affirmative can't grant both of these arguments, because, even though their underlying philosophies are contradictory, they both taken in their totality prove that the affirmative is bad.

However, if the negative says the following two things:
*The plan would lead to draconian immigration restrictions due to fear of crime
*Increased immigration risks increased terrorism

The affirmative can GRANT both arguments to claim that the plan is still a good idea because it leads to future restrictions on immigration which decrease terrorism. The difference is that, while both of these arguments by themselves would be arguments against the affirmative, taken together they become an argument for the affirmative. This common mistake is known as a "double turn."

Some judges are opposed to "negation theory." As with most theoretical issues in debate, teams tend to argue for negation theory when it is to their advantage (i.e. when they are negative) and to argue against it when it is not.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Theory of justification — is a part of epistemology that attempts to understand the justification of propositions and beliefs. Epistemologists are concerned with various epistemic features of belief, which include the ideas of justification, warrant, rationality, and… …   Wikipedia

  • Theory (mathematical logic) — This article is about theories in a formal language, as studied in mathematical logic. For other uses, see Theory (disambiguation). In mathematical logic, a theory (also called a formal theory) is a set of sentences in a formal language. Usually… …   Wikipedia

  • Negation of the negation —    Originally a concept of Georg Wilhelm Friedrich Hegel, the negation of the negation is a move ment of the triadic dialectic whereby conflict between opposites is resolved. Although Karl Marx makes use of the Hegelian terminology, he differs in …   Historical dictionary of Marxism

  • set theory — the branch of mathematics that deals with relations between sets. [1940 45] * * * Branch of mathematics that deals with the properties of sets. It is most valuable as applied to other areas of mathematics, which borrow from and adapt its… …   Universalium

  • Typographical Number Theory — (also known as TNT) is a formal axiomatic system describing the natural numbers that appears in Douglas Hofstadter s book Gödel, Escher, Bach. It is an implementation of Peano arithmetic that Hofstadter uses to help explain Gödel s incompleteness …   Wikipedia

  • Zermelo–Fraenkel set theory — Zermelo–Fraenkel set theory, with the axiom of choice, commonly abbreviated ZFC, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics.ZFC consists of a single primitive ontological notion, that of… …   Wikipedia

  • automata theory — Body of physical and logical principles underlying the operation of any electromechanical device (an automaton) that converts information input in one form into another, or into some action, according to an algorithm. Norbert Wiener and Alan M.… …   Universalium

  • Model theory — This article is about the mathematical discipline. For the informal notion in other parts of mathematics and science, see Mathematical model. In mathematics, model theory is the study of (classes of) mathematical structures (e.g. groups, fields,… …   Wikipedia

  • Double negation — This article is about the logical concept. For the linguistic concept, see Double negative. In the theory of logic, double negation is expressed by saying that a proposition A is identical to (equivalent to) not (not A), or by the formula A = A.… …   Wikipedia

  • Critical theory — Horkheimer, Adorno, Habermas David Rasmussen HEGEL, MARX AND THE IDEA OF A CRITICAL THEORY Critical theory1 is a metaphor for a certain kind of theoretical orientation which owes its origin to Hegel and Marx, its systematization to Horkheimer and …   History of philosophy

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”