Refracting telescope

Refracting telescope

A refracting or refractor telescope is a dioptric telescope that uses a lens as its objective to form an image. The refracting telescope design was originally used in spy glasses and astronomical telescopes but is also used in other devices such as binoculars and long or telephoto camera lenses.

Invention

Refractors were the earliest type of optical telescope. The first practical refracting telescopes appeared in the Netherlands in about 1608, and were credited to three individuals, Hans Lippershey and Zacharias Janssen, spectacle-makers in Middelburg, and Jacob Metius of Alkmaar also known as Jacob Adriaanszoon. Galileo, happening to be in Venice in about the month of May 1609, heard of the invention and constructed a much improved version of his own based on his understanding of the effects of refraction. Galileo then communicated the details of his invention to the public, and presented the instrument itself to the Doge Leonardo Donato, sitting in full council. Galileo may thus claim to have invented the refracting telescope independently, but not until he had heard that others had done so.

Refracting telescope designs

All refracting telescopes use the same principles. The combination of an objective lenses (1) and some type of eyepiece (2) is used to gathered more light than the human eye could collect on its own, focus it (5), and present the viewer with a brighter, clearer, and magnified virtual image (6). The objective in a refracting telescope refracts or bends light. This refraction causes parallel light rays to converge at a focal point; while those which were not parallel converge upon a focal plane. Refracting telescopes can come in many different configurations to correct for image orientation and types of aberration. Because the image was formed by the bending of light, or refraction, these telescopes are called "refracting telescopes" or "refractors".

Galilean telescope

The original design Galileo came up with in 1608 is commonly called a Galilean telescope. It uses a convex objective lens and a concave eyepiece lens. Galilean telescopes produce upright images.

Galileo’s best telescope magnified objects about 30 times. Because of flaws in its design, such as the shape of the lens, the images were blurry and distorted. Despite these flaws, the telescope was still good enough for Galileo to explore the sky. The Galilean telescope was the first to see the planet jupiter and its moons.

Keplerian Telescope

The Keplerian Telescope, invented by Johannes Kepler in 1611, is an improvement on Galileo's design. It uses a convex lens as the eyepiece instead of Galileo's concave one. The advantage of this arrangement is the rays of light emerging from the eyepiece are converging. This allows for a much wider field of view and greater eye relief but the image for the viewer is inverted. Considerably higher magnifications can be reached with this design but to overcome aberrations the simple objective lens needs to have a very high f-ratio (Johannes Hevelius built one with a 45 m (150 ft) focal length). The design also allows for use of a micrometer at the focal plane (used to determining the angular size and/or distance between objects observed).

Achromatic refractors

The Achromatic refracting lens was invented in 1733 by an English barrister named Chester Moore Hall although it was independently invented and patented by John Dollond around 1758. The design overcame the need for very long focal lengths in refracting telescopes by using an objective made of two pieces of glass with different dispersion, "crown" and "flint glass", to limit the effects of chromatic and spherical aberration. Each side of each piece is ground and polished, and then the two pieces are assembled together. Achromatic lenses are corrected to bring two wavelengths (typically red and blue) into focus in the same plane.

Apochromatic refractors

Apochromatic refractors have objectives built with special, extra-low dispersion materials. They are designed to bring three wavelengths (typically red, green, and blue) into focus in the same plane. The residual color error (secondary spectrum) can be up to an order of magnitude less than that of an achromatic lens. Such telescopes contain elements of fluorite or special, extra-low dispersion (ED) glass in the objective and produce a very crisp image that is virtually free of chromatic aberration. Such telescopes are sold in the high-end amateur telescope market. Apochromatic refractors are available with objectives of up to 553 mm in diameter, but most are between 80 and 152 mm.

Technical considerations

Refractors have been criticized for their relatively high-degree of residual chromatic and spherical aberration. This affects shorter focal lengths more than longer ones. A 4" f/|6|link=yes achromatic refractor is likely to show considerable color fringing (generally a purple halo around bright objects). A 4" f/16 will have little color fringing.

In very large apertures, there is also a problem of lens sagging, a result of gravity deforming glass. Since a lens can only be held in place by its edge, the center of a large lens will sag due to gravity, distorting the image it produces. The largest practical lens size in a refracting telescope is around 1 meter [ [http://books.google.com/books?id=OJclbOHqrD0C&pg=PT532&lpg=PT532&dq=the+largest+telescope+lens+sag&source=web&ots=JKhS5JXwab&sig=_V69t8S41FymEUegZqUSUb7OdmI "Physics Demystified" By Stan Gibilisco, ISBN 0071382011, page 515] ] .

There is a further problem of glass defects, striae or small air bubbles trapped within the glass. In addition, glass is opaque to certain wavelengths, and even visible light is dimmed by reflection and absorption when it crosses the air-glass interfaces and passes through the glass itself. Most of these problems are avoided or diminished by using reflecting telescopes, that can be made in far larger apertures.

Notable refracting telescopes

* Yerkes Observatory 102 cm
* Swedish Solar Telescope (100cm)
* Lick Observatory (91cm)
* Paris Observatory (83 cm + 62cm)
* Nice Observatory (76cm)
* Archenhold Observatory (68cm, 21 m focal length - the longest refracting telescope ever built)
* Lowell Observatory (24 in)
* Chabot Space & Science Center (20 in, 8 in)
* Griffith Observatory (12 in)
* Dearborn Observatory (18.5 in)
* Great Paris Exhibition Telescope of 1900 (1.25 m)

See also

* Reflecting telescopes
* Catadioptric telescopes
* Astrograph
* List of largest optical refracting telescopes

References

External links

* [http://www.nasa.gov/audience/foreducators/informal/features/F_Build_a_Telescope_prt.htm nasa.gov - Build a Telescope]
* [http://galileo.rice.edu/lib/student_work/astronomy96/mtelescope.html Making a Galilean Telescope]
* [http://www.pacifier.com/~tpope/Building_A_Galilean_Telescope.htm BUILDING A GALILEAN TELESCOPE]
* [http://www.pacifier.com/~tpope/Galilean_Optics_Page.htm OPTICS OF THE SINGLET REFRACTOR: GALILEO vs. KEPLER]


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Refracting telescope — Telescope Tel e*scope, n. [Gr. ? viewing afar, farseeing; ? far, far off + ? a watcher, akin to ? to view: cf. F. t[ e]lescope. See {Telegraph}, and { scope}.] An optical instrument used in viewing distant objects, as the heavenly bodies. [1913… …   The Collaborative International Dictionary of English

  • Refracting telescope — Refracting Re*fract ing, a. Serving or tending to refract; as, a refracting medium. [1913 Webster] {Refracting angle of a prism} (Opt.), the angle of a triangular prism included between the two sides through which the refracted beam passes in the …   The Collaborative International Dictionary of English

  • refracting telescope — n. 1. a telescope in which a large biconvex lens causes light rays to converge to a focus, forming an image magnified by a biconvex eyepiece 2. a similar telescope in which the converging rays are intercepted by a biconcave eyepiece: See… …   Universalium

  • refracting telescope — n. 1. a telescope in which a large biconvex lens causes light rays to converge to a focus, forming an image magnified by a biconvex eyepiece 2. a similar telescope in which the converging rays are intercepted by a biconcave eyepiece: See… …   English World dictionary

  • refracting telescope — ► NOUN ▪ a telescope which uses a lens to collect and focus the light …   English terms dictionary

  • refracting telescope — noun A telescope which produces a magnified image by refracting light through a series of lenses housed in a tube, with a light gathering objective lens at one end and an eyepiece at the other. Syn: refractor …   Wiktionary

  • refracting telescope — noun optical telescope that has a large convex lens that produces an image that is viewed through the eyepiece • Hypernyms: ↑optical telescope • Hyponyms: ↑field glass, ↑glass, ↑spyglass, ↑Galilean telescope …   Useful english dictionary

  • refracting telescope — /rəˌfræktɪŋ ˈtɛləskoʊp/ (say ruh.frakting teluhskohp) noun a telescope consisting essentially of a lens for forming an image and an eyepiece for viewing it. See telescope (def. 1) …  

  • refracting telescope. — See under telescope (def. 1). Also called refractor. [1755 65] * * * …   Universalium

  • refracting telescope — noun a telescope which uses a converging lens to collect the light …   English new terms dictionary

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”