- Baroreceptor
Baroreceptors (or baroceptors) in the
human body detect the pressure of blood flowing through them, and can send messages to thecentral nervous system to increase or decreasetotal peripheral resistance andcardiac output . They arestretch -sensitivemechanoreceptors that form a part of theafferent arm of thebaroreflex , which acts as a short-term regulator ofheart rate andblood pressure .Baroreceptors can be divided into two categories, high pressure arterial baroreceptors and low pressure baroreceptors (also known as cardiopulmonary receptors).
Arterial baroreceptors
Arterial baroreceptors present in the arch of the
aorta , and the carotid sinuses of the left and rightinternal carotid arteries . They are sprayed nerve endings that lie in the adventitia of the artery, not drug-binding molecules as the term 'receptor ' may suggest. In some sensitive people, due to baroreceptors, vigorouspalpation of a carotid artery can cause severebradycardia . the baroreceptors can identify the changes in the blood pressure which can increase or decrease the heart rate.Baroreceptors act to maintain mean arterial blood pressure to allow tissues to receive the right amount of blood.
:"See main article
Baroreflex "If blood pressure falls, such as in
hypovolaemic shock , baroreceptor firing rate decreases. Signals from the carotid baroreceptors are sent via theglossopharyngeal nerve (cranial nerve IX). Signals from the aortic baroreceptors travel through thevagus nerve (cranial nerve X). Baroreceptors work by detecting the amount of stretch applied to the walls of the arteries where they are located. The more the baroreceptor walls are stretched, the more frequently they generateaction potential s. The arterial baroreceptors have a lower threshold of around 70mmHg (typical arterialblood pressure is around 80-90 mmHg). Below this the receptors stop firing signals completely, any further decrease in pressure will cause no additional effect. At this low pressure however the response ofchemoreceptor s becomes more vigorous, especially below 60 mmHg.Baroreceptors respond very quickly to maintain a stable blood pressure, but they only respond to short term changes. Over a period of days or weeks they will reset to a new value. Thus, in people with
essential hypertension the baroreceptors behave as if the elevated blood pressure is normal and aim to maintain this high blood pressure.Low pressure baroreceptors
These are in
vein s and in the walls of the atria of theheart . The low pressure baroreceptors are involved with the regulation of blood volume. The blood volume determines the mean pressure throughout the system, in particular in the venous side where most of the blood is held.The low pressure baroreceptors have both circulatory and renal effects, they produce changes in
hormone secretion which have profound effects on the retention of salt and water and also influence intake of salt and water. The renal effects allow the receptors to change the mean pressure in the system in the long term.Denervating these receptors 'fools' the body into thinking that we have too low blood volume and initiates mechanisms which retain fluid and so push up the blood pressure to a higher level than we would otherwise have.
External links
*
Wikimedia Foundation. 2010.