Clopen set

Clopen set

In topology, a clopen set (a portmanteau of closed-open set) in a topological space is a set which is both open and closed. That this is possible for a set is not as counter-intuitive as it might seem if the terms open and closed were thought of as antonyms; in fact they are not. A set is defined to be closed if its complement is open, which leaves the possibility of an open set whose complement is itself also open, making the first set both open and closed, and therefore clopen.

Contents

Examples

In any topological space X, the empty set and the whole space X are both clopen.[1][2]

Now consider the space X which consists of the union of the two intervals [0,1] and [2,3] of R. The topology on X is inherited as the subspace topology from the ordinary topology on the real line R. In X, the set [0,1] is clopen, as is the set [2,3]. This is a quite typical example: whenever a space is made up of a finite number of disjoint connected components in this way, the components will be clopen.

As a less trivial example, consider the space Q of all rational numbers with their ordinary topology, and the set A of all positive rational numbers whose square is bigger than 2. Using the fact that \sqrt 2 is not in Q, one can show quite easily that A is a clopen subset of Q. (Note also that A is not a clopen subset of the real line R; it is neither open nor closed in R.)

Properties

  • A topological space X is connected if and only if the only clopen sets are the empty set and X.
  • A set is clopen if and only if its boundary is empty.
  • Any clopen set is a union of (possibly infinitely many) connected components.
  • If all connected components of X are open (for instance, if X has only finitely many components, or if X is locally connected), then a set is clopen in X if and only if it is a union of connected components.
  • A topological space X is discrete if and only if all of its subsets are clopen.
  • Using the union and intersection as operations, the clopen subsets of a given topological space X form a Boolean algebra. Every Boolean algebra can be obtained in this way from a suitable topological space: see Stone's representation theorem for Boolean algebras.

Notes

  1. ^ Bartle, Robert G.; Sherbert, Donald R. (1992) [1982]. Introduction to Real Analysis (2nd ed.). John Wiley & Sons, Inc.. pp. 348 (regarding the real numbers and the empty set in R). 
  2. ^ Hocking, John G.; Young, Gail S. (1961). Topology. NY: Dover Publications, Inc.. pp. 5 and 6 (regarding topological spaces). 

References


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Clopen — may refer to: *a clopen set as in topology (a branch of mathematics) *a term used by workers in retail and service jobs when then have to close one night, and open the following day. This term can be used either as a noun ( my schedule has a… …   Wikipedia

  • Clopen — Im Teilgebiet Topologie der Mathematik ist eine abgeschlossene offene Menge (im Englischen clopen set) eine Teilmenge eines topologischen Raums, die gleichzeitig abgeschlossen und offen ist. Dies erscheint auf den ersten Blick seltsam; man muss… …   Deutsch Wikipedia

  • Open set — Example: The points (x, y) satisfying x2 + y2 = r2 are colored blue. The points (x, y) satisfying x2 + y2 < r2 are colored red. The red points form an open set. The blue points form a closed set. The union of the red and blue points is a… …   Wikipedia

  • Closed set — This article is about the complement of an open set. For a set closed under an operation, see closure (mathematics). For other uses, see Closed (disambiguation). In geometry, topology, and related branches of mathematics, a closed set is a set… …   Wikipedia

  • Cantor set — In mathematics, the Cantor set, introduced by German mathematician Georg Cantor in 1883 [Georg Cantor (1883) Über unendliche, lineare Punktmannigfaltigkeiten V [On infinite, linear point manifolds (sets)] , Mathematische Annalen , vol. 21, pages… …   Wikipedia

  • Empty set — ∅ redirects here. For similar looking symbols, see Ø (disambiguation). The empty set is the set containing no elements. In mathematics, and more specifically set theory, the empty set is the unique set having no elements; its size or cardinality… …   Wikipedia

  • Cylinder set — In mathematics, a cylinder set is the natural open set of a product topology. Cylinder sets are particularly useful in providing the base of the natural topology of the product of a countable number of copies of a set. If V is a finite set, then… …   Wikipedia

  • Field of sets — Set algebra redirects here. For the basic properties and laws of sets, see Algebra of sets. In mathematics a field of sets is a pair where X is a set and is an algebra over X i.e., a non empty subset of the power set of X closed under the… …   Wikipedia

  • Glossary of topology — This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also… …   Wikipedia

  • Locally connected space — In this topological space, V is a neighbourhood of p and it contains a connected neighbourhood (the dark green disk) that contains p. In topology and other branches of mathematics, a topological space X is locally connected if every point admits… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”