History of classical mechanics

History of classical mechanics

Early Ideas on Motion

The Greek philosophers, and Aristotle in particular, were the first to propose that there are abstract principles governing nature. Aristotle argued, in his paper "On the Heavens", that every body has a "heaviness" and so tends to fall to its "natural place". From this he wrongly concluded that an object twice as heavy as another would fall to the ground from the same distance in half the time. Aristotle believed in logic over experimentation and so it wasn't until more than a thousand years later that experiments were developed to prove and disprove laws of mechanics. However, in his "On the Heavens", he made a distinction between "natural motion" and "enforced motion". He led to the conclusion that in a vacuum there is no reason for a body to naturally move to one point rather than any other, and so a body in a vacuum will either stay at rest or move indefinitely if put in motion. So Aristotle was really the first to develop the law of inertia. However, when an object is not in a vacuum, he believed that an object would stop moving once the applied forces were removed. The Aristotelians developed elaborate explanations for why an arrow continued to fly through the air once it left the bow - for example, it was proposed that the arrow created a vacuum behind it into which air rushed, providing a force at the back of the arrow. Aristotle's beliefs were based on the fact that the heavens were perfect and had different laws from those on Earth.

The experimental scientific method was introduced into mechanics in the 11th century by al-Biruni, who along with al-Khazini in the 12th century, unified statics and dynamics into the science of mechanics, and combined the fields of hydrostatics with dynamics to create the field of hydrodynamics. [Mariam Rozhanskaya and I. S. Levinova (1996), "Statics", in Roshdi Rashed, ed., "Encyclopedia of the History of Arabic Science", Vol. 2, p. 614-642 [642] , Routledge, London and New York] Early yet incomplete theories pertaining to mechanics were also discovered by several other Muslim physicists during the Middle Ages. The law of inertia, known as Newton's first law of motion, and the concept of momentum, part of Newton's second law of motion, were discovered by Ibn al-Haytham (Alhacen) [Abdus Salam (1984), "Islam and Science". In C. H. Lai (1987), "Ideals and Realities: Selected Essays of Abdus Salam", 2nd ed., World Scientific, Singapore, p. 179-213.] [Seyyed Hossein Nasr, "The achievements of Ibn Sina in the field of science and his contributions to its philosophy", "Islam & Science", December 2003.] and Avicenna.Fernando Espinoza (2005). "An analysis of the historical development of ideas about motion and its implications for teaching", "Physics Education" 40 (2), p. 141.] [Seyyed Hossein Nasr, "Islamic Conception Of Intellectual Life", in Philip P. Wiener (ed.), "Dictionary of the History of Ideas", Vol. 2, p. 65, Charles Scribner's Sons, New York, 1973-1974.] The proportionality between force and acceleration, an important principle in classical mechanics was discovered by Hibat Allah Abu'l-Barakat al-Baghdaadi, [cite encyclopedia
last = Shlomo Pines
title = Abu'l-Barakāt al-Baghdādī, Hibat Allah
encyclopedia = Dictionary of Scientific Biography
volume = 1
pages = 26-28
publisher = Charles Scribner's Sons
location = New York
date = 1970
isbn = 0684101149

(cf. Abel B. Franco (October 2003). "Avempace, Projectile Motion, and Impetus Theory", "Journal of the History of Ideas" 64 (4), p. 521-546 [528] .)
] and theories on gravity were developed by Ja'far Muhammad ibn Mūsā ibn Shākir, [Robert Briffault (1938). "The Making of Humanity", p. 191.] Ibn al-Haytham, [Nader El-Bizri (2006), "Ibn al-Haytham or Alhazen", in Josef W. Meri (2006), "Medieval Islamic Civilization: An Encyclopaedia", Vol. II, p. 343-345, Routledge, New York, London.] and al-Khazini. [Mariam Rozhanskaya and I. S. Levinova (1996), "Statics", in Roshdi Rashed, ed., "Encyclopaedia of the History of Arabic Science", Vol. 2, p. 622. London and New York: Routledge.] It is known that Galileo Galilei's mathematical treatment of acceleration and his concept of impetus [Galileo Galilei, "Two New Sciences", trans. Stillman Drake, (Madison: Univ. of Wisconsin Pr., 1974), pp 217, 225, 296-7.] grew out of earlier medieval Muslim analyses of motion, especially those of Avicenna and Ibn Bajjah. [Ernest A. Moody (1951). "Galileo and Avempace: The Dynamics of the Leaning Tower Experiment (I)", "Journal of the History of Ideas" 12 (2), p. 163-193.]

Isaac Newton

It wasn't until Galileo Galilei's development of the telescope and his observations that it became clear that the heavens were not made from a perfect, unchanging substance. From Copernicus's heliocentric hypothesis Galileo believed the Earth was just the same as any other planet. Galileo may have performed the famous experiment of dropping two cannon balls from the tower of Pisa. (The theory and the practice showed that they both hit the ground at the same time.) Though the reality of this experiment is disputed, he did carry out quantitative experiments by rolling balls on an inclined plane; his correct theory of accelerated motion was apparently derived from the results of the experiments. Galileo also found that a body dropped vertically hits the ground at the same time as a body projected horizontally, so an Earth rotating uniformly will still have objects falling to the ground under gravity. More significantly, it showed that uniform motion is indistinguishable from rest, and so forms the basics of the theory of relativity.

Sir Isaac Newton was the first to propose and unify all three laws of motion (the law of inertia, his second law mentioned above, and the law of action and reaction), and to prove that these laws govern both everyday objects and celestial objects. Newton and most of his contemporaries, with the notable exception of Christiaan Huygens, hoped that classical mechanics would be able to explain all entities, including (in the form of geometric optics) light. When he discovered Newton's rings, Newton's own explanation avoided wave principles and, he supposed that the light particles were altered or excited by the glass and resonated.

Newton also developed the calculus which is necessary to perform the mathematical calculations involved in classical mechanics. However it was Gottfried Leibniz who, independently of Newton, developed a calculus with the notation of the derivative and integral which are used to this day. Newton's dot notation for time derivatives is retained in classical mechanics.

Modern Times

After Newton there were several re-formulations which progressively allowed a solution to be found to a far greater number of problems. The first notable re-formulation was in 1788 by Joseph Louis Lagrange, an Italian-French mathematician. In Lagrangian mechanics the solution is formed through using the path of least action and it is based on the Calculus of variations. Lagrangian mechanics was in turn re-formulated in 1833 by William Rowan Hamilton. The advantage of Hamiltonian mechanics was that its framework allowed for a more in depth look at the underlying principles of classical mechanics. Most of the framework of Hamiltonian mechanics can be seen in Quantum mechanics however the exact meanings of the terms differ due to quantum effects.

Although classical mechanics is largely compatible with other "classical physics" theories such as classical electrodynamics and thermodynamics, some difficulties were discovered in the late 19th century that could only be resolved by more modern physics. When combined with classical thermodynamics, classical mechanics leads to the Gibbs paradox in which entropy is not a well-defined quantity. As experiments reached the atomic level, classical mechanics failed to explain, even approximately, such basic things as the energy levels and sizes of atoms. The effort at resolving these problems led to the development of quantum mechanics. Similarly, the different behaviour of classical electromagnetism and classical mechanics under velocity transformations led to the theory of relativity.

By the end of the 20th century, the place of classical mechanics in physics is no longer that of an independent theory. Along with classical electromagnetism, it has become imbedded in relativistic quantum mechanics or quantum field theoryref|Lectures-2-10. It is the non-relativistic, non-quantum mechanical limit for massive particles.

Classical mechanics has also been a source of inspiration for mathematicians. The realization was made that the phase space in classical mechanics admits a natural description as a symplectic manifold (indeed a cotangent bundle in most cases of physical interest), and symplectic topology, which can be thought of as the study of global issues of Hamiltonian mechanics, has been a fertile area of mathematics research starting in the 1980s.



* René Dugas "A History of Mechanics" Dover, (1988) ISBN 0-486-65632-2

ee also

*Classical mechanics
*Timeline of classical mechanics

Wikimedia Foundation. 2010.

Нужна курсовая?

Look at other dictionaries:

  • Classical mechanics — This article is about the physics sub field. For the book written by Herbert Goldstein and others, see Classical Mechanics (book). Classical mechanics …   Wikipedia

  • Timeline of classical mechanics — Timeline of classical mechanics:Early history* 260 BC Archimedes mathematically works out the principle of the lever and discovers the principle of buoyancy * 60 AD Hero of Alexandria writes Metrica, Mechanics, and Pneumatics * 1000 1030 Abū… …   Wikipedia

  • Helmholtz theorem (classical mechanics) — For other uses, see Helmholtz theorem .The Helmholtz theorem of classical mechanics reads as follows:Let:H(x,p;V)=K(p)+varphi(x;V) be the Hamiltonian of a one dimensional system, where :K=frac{p^2}{2m} is the kinetic energy and :varphi(x;V) is a… …   Wikipedia

  • Mechanics of planar particle motion — Classical mechanics Newton s Second Law History of classical mechanics  …   Wikipedia

  • Mechanics — This article is about an area of scientific study. For other uses, see Mechanic (disambiguation). Mechanics (Greek Μηχανική) is the branch of physics concerned with the behavior of physical bodies when subjected to forces or displacements, and… …   Wikipedia

  • mechanics — /meuh kan iks/, n. 1. (used with a sing. v.) the branch of physics that deals with the action of forces on bodies and with motion, comprised of kinetics, statics, and kinematics. 2. (used with a sing. v.) the theoretical and practical application …   Universalium

  • History of science — History of science …   Wikipedia

  • Classical physics — Wave equation History of physics …   Wikipedia

  • History of quaternions — This article is an indepth story of the history of quaternions. It tells the story of who and when. To find out what quaternions are see quaternions and to learn about historical quaternion notation of the 19th century see classical quaternions… …   Wikipedia

  • History of physics — The modern discipline of physics emerged in the 17th century following in traditions of inquiry established by Galileo Galilei, René Descartes, Isaac Newton, and other natural philosophers.Fact|date=September 2008 Prior to this time, a unified… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”