- Spin-½
In
quantum mechanics , spin is an intrinsic property of all elementary particles.Fermions , the particles that constitute ordinary matter, havehalf-integer spin. Spin-½ particles constitute an important subset of such fermions. All known elementary particles that are fermions have spin ½.Overview
Particles having spin ½ include the
electron ,proton ,neutron ,neutrino , andquarks . The dynamics of spin-½ objects cannot be accurately described usingclassical physics ; they are among the simplest systems which requirequantum mechanics to describe them. As such, the study of the behavior of spin-½ systems forms a central part ofquantum mechanics .General properties
Spin-½ objects are all
fermions (a fact explained by thespin statistics theorem ) and satisfy thePauli exclusion principle . Spin-½ particles can have a permanent magnetic moment along the direction of their spin, and this magnetic moment gives rise to electromagnetic interactions that depend on the spin. One such effect that was important in the discovery of spin is theZeeman effect .Unlike in more complicated quantum mechanical systems, the spin of a spin-½ particle can be expressed as a
linear combination of just two eigenstates, or eigenspinors. These are traditionally labeled spin up and spin down. Because of this the quantum mechanical spin operators can be represented as simple 2 × 2 matrices, as opposed to the infinite dimensional matrices commonly needed to represent operators like energy or position. These matrices are called thePauli matrices .Creation and annihilation operators can be constructed for spin-½ objects; these obey the same commutation relations as otherangular momentum operator s.Connection to the uncertainty principle
One consequence of the generalized uncertainty principle is that the spin projection operators (which measure the spin along a given direction like "x", "y", or "z"), cannot be measured simultaneously. Physically, this means that it is ill defined what axis a particle is spinning about. A measurement of the "z"-component of spin destroys any information about the "x" and "y" components that might previously have been obtained.
Stern–Gerlach experiment
When a spin-½ particle with non-zero
magnetic moment like an electron is placed in an inhomogenous magnetic field, it experiences a force. This acts to separate out particles in the spin up state from particles in the spin down state. This is the idea behind theStern–Gerlach experiment .ymmetry
Mathematically, quantum mechanical spin is not described by a vector as in classical angular momentum. It is described using a family of objects known as
spinor s. There are subtle differences between the behavior of spinors and vectors undercoordinate rotation s. Rotating a spin-1/2 particle by 360 degrees does not bring it back to the same quantum state, but to the state with the opposite quantum phase; this is detectable, in principle, withinterference experiments. To return the particle to its exact original state, one needs a 720 degree rotation!Mathematical description
The
quantum state of the spin of a spin-½ particle can be described by a complex-valued vector with two components called a two-componentspinor . When spinors are used to describe the quantum states, quantum mechanical operators are represented by 2 × 2, complex-valued Hermitian matrices.For example, the spin projection operator effects a measurement of the spin in the "z" direction.:
operator has two
eigenvalue s, of , which correspond to theeigenvector s::
These vectors form a complete basis for the
Hilbert space describing the spin-½ particle. Thus, linear combinations of these two states can represent all possible states of the spin.ee also
*Spin
*Spinor
*Fermions
*Pauli matrices References
Griffiths, David J. (2005) "Introduction to Quantum Mechanics (2nd ed.)". Upper Saddle River, NJ: Pearson Prentice Hall. ISBN 0-13-111892-7.
Wikimedia Foundation. 2010.