In quantum mechanics, spin is an intrinsic property of all elementary particles. Fermions, the particles that constitute ordinary matter, have half-integer spin. Spin-½ particles constitute an important subset of such fermions. All known elementary particles that are fermions have spin ½.


Particles having spin ½ include the electron, proton, neutron, neutrino, and quarks. The dynamics of spin-½ objects cannot be accurately described using classical physics; they are among the simplest systems which require quantum mechanics to describe them. As such, the study of the behavior of spin-½ systems forms a central part of quantum mechanics.

General properties

Spin-½ objects are all fermions (a fact explained by the spin statistics theorem) and satisfy the Pauli exclusion principle. Spin-½ particles can have a permanent magnetic moment along the direction of their spin, and this magnetic moment gives rise to electromagnetic interactions that depend on the spin. One such effect that was important in the discovery of spin is the Zeeman effect.

Unlike in more complicated quantum mechanical systems, the spin of a spin-½ particle can be expressed as a linear combination of just two eigenstates, or eigenspinors. These are traditionally labeled spin up and spin down. Because of this the quantum mechanical spin operators can be represented as simple 2 × 2 matrices, as opposed to the infinite dimensional matrices commonly needed to represent operators like energy or position. These matrices are called the Pauli matrices.

Creation and annihilation operators can be constructed for spin-½ objects; these obey the same commutation relations as other angular momentum operators.

Connection to the uncertainty principle

One consequence of the generalized uncertainty principle is that the spin projection operators (which measure the spin along a given direction like "x", "y", or "z"), cannot be measured simultaneously. Physically, this means that it is ill defined what axis a particle is spinning about. A measurement of the "z"-component of spin destroys any information about the "x" and "y" components that might previously have been obtained.

Stern–Gerlach experiment

When a spin-½ particle with non-zero magnetic moment like an electron is placed in an inhomogenous magnetic field, it experiences a force. This acts to separate out particles in the spin up state from particles in the spin down state. This is the idea behind the Stern–Gerlach experiment.


Mathematically, quantum mechanical spin is not described by a vector as in classical angular momentum. It is described using a family of objects known as spinors. There are subtle differences between the behavior of spinors and vectors under coordinate rotations. Rotating a spin-1/2 particle by 360 degrees does not bring it back to the same quantum state, but to the state with the opposite quantum phase; this is detectable, in principle, with interference experiments. To return the particle to its exact original state, one needs a 720 degree rotation!

Mathematical description

The quantum state of the spin of a spin-½ particle can be described by a complex-valued vector with two components called a two-component spinor. When spinors are used to describe the quantum states, quantum mechanical operators are represented by 2 × 2, complex-valued Hermitian matrices.

For example, the spin projection operator S_z effects a measurement of the spin in the "z" direction.: S_z = frac{hbar}{2} sigma _z = frac{hbar}{2} egin{pmatrix}1&0\ 0&-1 end{pmatrix}

S_z operator has two eigenvalues, of pm extstylefrac{hbar}{2} , which correspond to the eigenvectors

: egin{bmatrix} 1 \ 0 end{bmatrix} = left vert {s_z = + extstylefrac 1 2} ight angle = | {uparrow} angle: egin{bmatrix} 0 \ 1 end{bmatrix} = left vert {s_z = - extstylefrac 1 2} ight ang = | {downarrow} ang

These vectors form a complete basis for the Hilbert space describing the spin-½ particle. Thus, linear combinations of these two states can represent all possible states of the spin.

ee also

*Pauli matrices


Griffiths, David J. (2005) "Introduction to Quantum Mechanics (2nd ed.)". Upper Saddle River, NJ: Pearson Prentice Hall. ISBN 0-13-111892-7.

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • spin — spin …   Dictionnaire des rimes

  • SPIN — On appelle «spin» le moment angulaire ou cinétique intrinsèque des particules quantiques ou quantons. Ce terme anglais évoque le mouvement de rotation propre que peuvent posséder les objets physiques, telles les planètes ou les balles de tennis,… …   Encyclopédie Universelle

  • Spin — (von englisch spin ‚Drehung‘, ‚Drall‘), auch Eigendrehimpuls, ist eine quantenmechanische Eigenschaft von Teilchen. Spin hat kein Pendant in der klassischen Physik, und somit können semi klassische Erklärungen und Analogien nicht vollständig …   Deutsch Wikipedia

  • spin — spin·ach; spin; spin·dle·age; spin·dle·ful; spin·dler; spin·dli·ness; spin·dly; spin·drift; spin·et; spin·i·ness; spin·na·bil·i·ty; spin·na·ble; spin·na·ker; spin·ner; spin·ner·et; spin·ner·ular; spin·ner·ule; spin·nery; spin·ney; spin·or;… …   English syllables

  • Spin — may refer to:* Rotation or spin, a movement of an object in a circular motion * Spin (physics) or particle spin, a fundamental property of elementary particles * Spin (flight), a special and often intense case of a stall * Spin (public relations) …   Wikipedia

  • Spin AG — Unternehmensform AG Gründung 1996 als GmbH Unternehmenssitz Regensburg, Deutschland Unternehmensleitung …   Deutsch Wikipedia

  • Spin.de — Spin AG Rechtsform AG Gründung 1996 als GmbH Sitz Regensburg, Deutschland Leitung Paul Schmid, Fabian Rott Mitarbeiter etwa …   Deutsch Wikipedia

  • SPIN — (ursprünglich ein Akronym für Simple PROMELA Interpreter) ist eines der bekanntesten Werkzeuge zur Modellprüfung (engl. Model Checking). SPIN prüft endliche Zustandsautomaten (engl. Finite State Machines) mit der temporalen Logik LTL. Zusätzlich… …   Deutsch Wikipedia

  • Spin — (sp[i^]n), v. t. [imp. & p. p. {Spun}(Archaic imp. {Span}); p. pr. & vb. n. {Spinning}.] [AS. spinnan; akin to D. & G. spinnen, Icel. & Sw. spinna, Dan. spinde, Goth. spinnan, and probably to E. span. [root]170. Cf. {Span}, v. t., {Spider}.] 1.… …   The Collaborative International Dictionary of English

  • Spin-up — refers to the period of time taken by a traditional (non solid state) hard disk drive to accelerate its platters from a stopped state to an operational speed. The required operational speed depends on the design of the disk drive. Typical speeds… …   Wikipedia

  • Spin — Spin: Содержание 1 В математике 2 В вычислительной технике 3 В музыке …   Википедия

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”