Distribution (differential geometry)

Distribution (differential geometry)

In differential geometry, a discipline within mathematics, a distribution is a subset of the tangent bundle of a manifold satisfying certain properties. Distributions are used to build up notions of integrability, and specifically of a foliation of a manifold.

Even though they share the same name, distributions we discuss in this article have nothing to do with distributions in the sense of analysis.

Contents

Definition

Let M be a C^\infty manifold of dimension m, and let n \leq m. Suppose that for each x \in M, we assign an n-dimensional subspace \Delta_x \subset T_x(M) of the tangent space in such a way that for a neighbourhood N_x \subset M of x there exist n linearly independent smooth vector fields X_1,\ldots,X_n such that for any point y \in N_x, X_1(y),\ldots,X_n(y) span Δy. We let Δ refer to the collection of all the Δx for all x \in M and we then call Δ a distribution of dimension n on M, or sometimes a C^\infty n-plane distribution on M. The set of smooth vector fields \{ X_1,\ldots,X_n \} is called a local basis of Δ.

Involutive distributions

We say that a distribution Δ on M is involutive if for every point x \in M there exists a local basis \{ X_1,\ldots,X_n \} of the distribution in a neighbourhood of x such that for all 1 \leq i, j \leq n, [Xi,Xj] (the Lie bracket of two vector fields) is in the span of \{ X_1,\ldots,X_n \}. That is, if [Xi,Xj] is a linear combination of \{ X_1,\ldots,X_n \}. Normally this is written as [ \Delta , \Delta ] \subset \Delta.

Involutive distributions are the tangent spaces to foliations. Involutive distributions are important in that they satisfy the conditions of the Frobenius theorem, and thus lead to integrable systems.

A related idea occurs in Hamiltonian mechanics: two functions f and g on a symplectic manifold are said to be in mutual involution if their Poisson bracket vanishes.

Generalized distributions

A generalized distribution, or Stefan-Sussmann distribution, is similar to a distribution, but the subspaces \Delta_x \subset T_xM are not required to all be of the same dimension. The definition requires that the Δx are determined locally by a set of vector fields, but these will no longer be linearly independent everywhere. It is not hard to see that the dimension of Δx is lower semicontinuous, so that at special points the dimension is lower than at nearby points.

One class of examples is furnished by a non-free action of a Lie group on a manifold, the vector fields in question being the infinitesimal generators of the group action (a free action gives rise to a genuine distribution). Another arises in dynamical systems, where the set of vector fields in the definition is the set of vector fields that commute with a given one. There are also examples and applications in Control theory, where the generalized distribution represents infinitesimal constraints of the system.

References

  • William M. Boothby. Section IV. 8. Frobenius's Theorem in An Introduction to Differentiable Manifolds and Riemannian Geometry, Academic Press, San Diego, California, 2003.
  • P. Stefan, Accessible sets, orbits and foliations with singularities. Proc. London Math. Soc. 29 (1974), 699-713.
  • H.J. Sussmann, Orbits of families of vector fields and integrability of distributions. Trans. Amer. Math. Soc. 180 (1973), 171-188.

This article incorporates material from Distribution on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Differential geometry — A triangle immersed in a saddle shape plane (a hyperbolic paraboloid), as well as two diverging ultraparallel lines. Differential geometry is a mathematical discipline that uses the techniques of differential and integral calculus, as well as… …   Wikipedia

  • List of differential geometry topics — This is a list of differential geometry topics. See also glossary of differential and metric geometry and list of Lie group topics. Contents 1 Differential geometry of curves and surfaces 1.1 Differential geometry of curves 1.2 Differential… …   Wikipedia

  • Distribution — Contents 1 In mathematics, science, and technology 1.1 In mathematics 1.2 In science …   Wikipedia

  • Differential topology — In mathematics, differential topology is the field dealing with differentiable functions on differentiable manifolds. It is closely related to differential geometry and together they make up the geometric theory of differentiable manifolds.… …   Wikipedia

  • Differential equation — Not to be confused with Difference equation. Visualization of heat transfer in a pump casing, created by solving the heat equation. Heat is being generated internally in the casing and being cooled at the boundary, providing a steady state… …   Wikipedia

  • Information geometry — In mathematics and especially in statistical inference, information geometry is the study of probability and information by way of differential geometry. It reached maturity through the work of Shun ichi Amari in the 1980s, with what is currently …   Wikipedia

  • Partial differential equation — A visualisation of a solution to the heat equation on a two dimensional plane In mathematics, partial differential equations (PDE) are a type of differential equation, i.e., a relation involving an unknown function (or functions) of several… …   Wikipedia

  • Frobenius theorem (differential topology) — In mathematics, Frobenius theorem gives necessary and sufficient conditions for finding a maximal set of independent solutions of an overdetermined system of first order homogeneous linear partial differential equations. In modern geometric terms …   Wikipedia

  • Contact geometry — Contact form redirects here. For a web email form, see Form (web)#Form to email scripts. The standard contact structure on R3. Each point in R3 has a plane associated to it by the contact structure, in this case as the kernel of the one form dz − …   Wikipedia

  • Glossary of arithmetic and Diophantine geometry — This is a glossary of arithmetic and Diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”