Mixer (engine)

Mixer (engine)

Turbofan engines often feature an exhaust mixer, where the bypass (cold) air is mixed with the core (hot) exhaust gases, before exhausting to atmospheric pressure through a common (mixed flow) propelling nozzle.

Benefits

The mixer reduces the velocity of the exiting air, and consequently, reducing the amount of noise produced. Additionally, the temperature of the exhaust is reduced, rendering the thermal signature of the aircraft to be lower as well. This attribute is critical in military aircraft where thermal detection or heat-seeking weapons are used.

Mixer types

  • Annular - bypass and core streams are brought together co-annularly, mixing being achieved by the shearing effect at the stream interface
  • Forced - hot and cold chutes, intertwined, force the two streams to mix

Mixing efficiency is defined in a number of ways, but simplily, compares the actual thrust gain (due to mixing) to that of the ideal case. Annular mixers have a low pressure loss, but a low mixing efficiency. Forced mixers can have a high mixing efficiency, but this is offset by a high pressure loss.

Mixers are extremely common on military turbofans, since long coaxial exhaust pipes (i.e. hot and cold) are avoided. Afterburning, with the associated variable area nozzle, is also easier to accommodate.

Some high bypass ratio (e.g. civil) turbofans now feature a mixer, the advantage being a small thrust gain, which improves specific fuel consumption. Although the mixing process is not thorough, there is a jet noise benefit as well.

References